4.已知三個數(shù)成等差數(shù)列,其和為15,首末兩項的積為21,求這三個數(shù).

分析 設(shè)此等差數(shù)列的前3項分別為a-d,a,a+d,列出方程組,求出a,d,即可求出這三個數(shù).

解答 解:設(shè)此等差數(shù)列的前3項分別為a-d,a,a+d,
由題意可得$\left\{\begin{array}{l}{a-d+a+a+d=15}\\{(a-d)(a+d)=21}\end{array}\right.$,
∴a=5,d=±2,
∴這三個數(shù)為3,5,7或7,5,3.

點評 本題考查了等差數(shù)列的通項公式及其性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過點M(-3,2)與直線x+2y-9=0平行的直線方程是( 。
A.x-2y+7=0B.x+2y-1=0C.2x+y+8=0D.x+2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.比較x6+1與x4+x2的大小,其中x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且sin(A+$\frac{π}{6}$)-cos(B+C)=0.
(I)求角A;
(2)若b=4,sinB=2sinC,求邊a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足不等式$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,若M=3x+y,N=($\frac{1}{2}$)x$-\frac{7}{2}$,則( 。
A.M>NB.M=NC.M<ND.M+N=11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.sin80°cos20°-sin10°sin20°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知:A(1,3),B(3,7),C(6,0),D(8,-1),求證:$\overrightarrow{AB}⊥\overrightarrow{CD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(Ⅰ)證明:BD⊥平面A1CO;
(Ⅱ)若∠BAD=60°,求點C到平面OBB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(x個月)和市場占有率(y%)的幾組相關(guān)對應(yīng)數(shù)據(jù);
x12345
y0.020.050.10.150.18
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預(yù)測自上市起經(jīng)過多少個月,該款旗艦機型市場占有率能超過0.5%(精確到月)
附:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步練習(xí)冊答案