分析 由已知得OE=OD=8,tan∠COD=$\frac{1}{2}$,從而得到tan∠EOD=tan2∠COD=$\frac{4}{3}$,由此能求出E點坐標(biāo).
解答 解:∵長方形OBCD沿對角線OC折疊,OD=8,OB=4,
∴OE=OD=8,tan∠COD=$\frac{CD}{OD}$=$\frac{OB}{OD}$=$\frac{4}{8}=\frac{1}{2}$,
∴tan∠EOD=tan2∠COD=$\frac{2tan∠COD}{1-td{n}^{2}∠COD}$=$\frac{2×\frac{1}{2}}{1-(\frac{1}{2})^{2}}$=$\frac{4}{3}$,
∴設(shè)E(-4t,-3t),t>0,
∴|-4t|2+|-3t|2=64,解得t=$\frac{8}{5}$,
∴E(-$\frac{32}{5}$,-$\frac{24}{5}$).
點評 本題考查點的坐標(biāo)的求法,是基礎(chǔ)題,解題時要注意正切二倍角定理和長方形折疊性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,-3) | B. | (-2,-$\frac{3}{2}$ ) | C. | (-$\frac{3}{2}$,-1)? | D. | (-1,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個長度單位 | B. | 向右平移$\frac{π}{12}$個長度單位 | ||
C. | 向左平移$\frac{π}{6}$個長度單位 | D. | 向左平移$\frac{π}{12}$個長度單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 21 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,4] | B. | (-4,4) | C. | [-4,0)∪(0,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com