1.在復(fù)平面上曲線C對應(yīng)的點滿足|z-2-2i|=|z|,則點A(0,2)與曲線C上的點之間的最小距離為0.

分析 由題意可得z=x+yi,x,y∈R,由已知條件結(jié)合模長公式,以及點到直線的距離公式.

解答 解:設(shè)z=x+yi,x,y∈R
∵|z-2-2i|=|z|,
∴(x-2)2+(y-2)2=x2+y2,
即x+y-2=0,
∴點A(0,2)與曲線C上的點之間的最小距離d=$\frac{2-2}{\sqrt{2}}$=0,
故答案為:0.

點評 本題考查復(fù)數(shù)的模長公式,涉及軌跡方程的求解,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,命題q:?x∈R,sinx+cosx=$\sqrt{5}$,則下列判斷正確的是( 。
A.p∨q是假命題B.p∧(¬q)是真命題C.p∧q是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若正數(shù)x,y滿足2x2-xy+2y2=x+y+1,則x+y的取值范圍是( 。
A.[-$\frac{2}{3}$,2]B.(0,2]C.($\frac{1}{2}$,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,已知下列條件,解三角形(角度精確到0.1°,邊長精確到0.1cm)
(1)a=7cm,b=10cm,c=6cm
(2)a=9.4cm,b=15.9cm,c=21.1cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)是定義在區(qū)間[2,+∞)上的減函數(shù),若f(a2-2)-f(2-3a)>0成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若x6(2x-3)8=a0+a1(x-1)+a2(x-1)2+…+a14(x-1)14,則a1+a2+a3+…+a14=( 。
A.16B.63C.62D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)x1、x2是方程x2+3$\sqrt{3}$x+4=0的兩根,求arctanx1+arctanx2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知下列命題:①|(zhì)$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|;②$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{a}•\overrightarrow{c}$($\overrightarrow{a}$≠0),則$\overrightarrow$=$\overrightarrow{c}$;③($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}•(\overrightarrow•\overrightarrow{c})$;④若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$.其中真命題的個數(shù)( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線C的頂點在坐標原點,準線方程為x=-1,直線l與拋物線C相交于A,B兩點.若線段AB的中點為(2,1),則直線l的方程為( 。
A.y=2x-3B.y=2x-1C.y=x-3D.y=x-1

查看答案和解析>>

同步練習冊答案