19.在復(fù)平面內(nèi),復(fù)數(shù)(1+$\sqrt{3}$i)•i對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 寫出復(fù)數(shù)的對(duì)應(yīng)點(diǎn)的坐標(biāo),判斷即可.

解答 解:復(fù)數(shù)(1+$\sqrt{3}$i)•i=-$\sqrt{3}$+i.對(duì)應(yīng)點(diǎn)為(-$\sqrt{3}$,1)在第二象限.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的幾何意義,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.董師傅用鐵皮制作一封閉的工件,且三視圖如圖所示(單位:cm),圖中水平線與豎直線垂直),則制作該工件用去的鐵皮的面積為(制作過(guò)程鐵皮的損耗忽略不計(jì))(100(3+$\sqrt{5}$)cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知偶函數(shù)f(x),奇函數(shù)g(x)的圖象分別如圖(1)、圖(2)所示,方程f(g(x))=0,g(f(x))=0的實(shí)根的個(gè)數(shù)分別為a,b,則a+b=(  )
A.3B.7C.10D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合S={1,2,…,2016},若X是S的子集,把X中所有元素之和稱為X的“容量”,(規(guī)定空集容量為0),若X的容量為奇(偶)數(shù),則稱X為S的奇(偶)子集,記S的奇子集個(gè)數(shù)為m,偶子集個(gè)數(shù)為n,則m,n之間的關(guān)系為( 。
A.m=nB.m>nC.m<nD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)互不相等的平面向量組$\overrightarrow{a_i}$(i=1,2,…,n)滿足:
①|(zhì)$\overrightarrow{a_i}$|=2;
②$\overrightarrow{a_i}•\overrightarrow{a_j}$=0(1≤i,j≤n).
若$\overrightarrow{T_n}=\overrightarrow{a_1}-\overrightarrow{a_2}+…+{(-1)^{n-1}}\overrightarrow{a_n}$,記bn=|$\overrightarrow{T_n}{|^2}$,
則數(shù)列{bn}的前n項(xiàng)和Sn為Sn=2n2+2n(n=1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若判斷框內(nèi)是n≤6,則輸出的S為( 。
A.$\frac{3}{4}$B.$\frac{25}{24}$C.$\frac{11}{12}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖是某學(xué)校抽取的學(xué)生體重的頻率分布直方圖,已知圖中從左到右的前3個(gè)小組的頻率依次成等差數(shù)列,第2小組的頻數(shù)為10,則抽取的學(xué)生人數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在幾何體ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,F(xiàn)B=$\sqrt{10}$,M,N分別為EF,AB的中點(diǎn).
(I)求證:MN∥平面FCB;
(Ⅱ)若直線AF與平面FCB所成的角為30°,求平面MAB與平面FCB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},π)$,$tan(π-β)=\frac{1}{2}$,則tan(α-β)的值為( 。
A.$-\frac{2}{11}$B.$\frac{2}{11}$C.$\frac{11}{2}$D.$-\frac{11}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案