A. | $-\frac{2}{11}$ | B. | $\frac{2}{11}$ | C. | $\frac{11}{2}$ | D. | $-\frac{11}{2}$ |
分析 由條件利用同角三角函數(shù)的基本關系求得tanα的值,利用誘導公式求得tanβ,再利用兩角差的正切公式,求得要求式子的值.
解答 解:∵已知$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},π)$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$.
∵$tan(π-β)=\frac{1}{2}$=-tanβ,∴tanβ=-$\frac{1}{2}$,則tan(α-β)=$\frac{tanα-tanβ}{1+tanα•tanβ}$=-$\frac{2}{11}$,
故選:A.
點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的正切公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 相切 | ||
C. | 相離 | D. | 以上三種均有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4+$\frac{4π}{3}$ | B. | 6$\sqrt{3}$ | C. | 4+$\frac{2π}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,1] | B. | [-4,1) | C. | (-2,1] | D. | [-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $0<a<\frac{{\sqrt{5}-1}}{2}$或$a>\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{5}-1}}{2}<a<1$或$1<a<\frac{{\sqrt{5}+1}}{2}$ | ||
C. | $0<a<\frac{{\sqrt{3}-1}}{2}$或$a>\frac{{\sqrt{3}+1}}{2}$ | D. | $\frac{{\sqrt{3}-1}}{2}<a<1$或$1<a<\frac{{\sqrt{3}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com