7.下表給出的是某港口在某季節(jié)每天幾個時刻的水深關系
時刻0:003:006:009:0012:0015:0018:0021:0024:00
水深(m)5.07.05.03.05.07.05.03.05.0
若該港口的水深y(m)和時刻t(0≤t≤24)的關系可用函數(shù)y=Asin(ωt)+h(其中A>0,ω>0,h>0)來近似描述,則該港口在11:00的水深為4m.

分析 利用已知數(shù)據(jù),確定合適的周期、振幅等,即可得出函數(shù)解析式,從而能求出該港口在11:00的水深.

解答 解:由題意得函數(shù)y=Asin(ωt)+h(其中A>0,ω>0,h>0)的周期為T=12,
$\left\{\begin{array}{l}{h+A=7}\\{h-A=3}\end{array}\right.$,解得A=2,h=5,
∴ω=$\frac{2π}{12}$=$\frac{π}{6}$,
∴y=2sin$\frac{π}{6}t$+5,
∴該港口在11:00的水深為y=2sin$\frac{11}{6}π$+5=4(m).
故答案為:4.

點評 解具有周期變化現(xiàn)象的實際問題關鍵是能抽象出三角函數(shù)模型,解決的步驟是:審題,建模,求解,還原.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=1-$\frac{a}{x}$+aln$\frac{1}{x}$(a>0).
(1)當a=1時,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在($\frac{1}{e}$,e)上有兩個零點,求a的取值范圍;
(3)已知n∈N且n≥3,求證:ln$\frac{n+1}{3}$<$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在三棱錐P-ABC中,∠ABC=90°,PA=PB=PC.
(1)求證:平面PAC⊥平面ABC;
(2)若AB=BC=PA,求二面角B-PA-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.四棱錐P-ABCD中,底面ABCD為矩形,側面PAB⊥底面ABCD.
(1)證明:平面PDA⊥平面PBA;
(2)若AB=2,BC=$\sqrt{2}$,PA=PB,四棱錐P-ABCD的體積為$\frac{{2\sqrt{6}}}{3}$,求BD與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知點$P(\sqrt{2},1)$和橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$.
(Ⅰ)設橢圓的兩個焦點分別為F1,F(xiàn)2,試求△PF1F2的周長及橢圓的離心率;
(Ⅱ)若直線l:$\sqrt{2}x-2y+m=0(m≠0)$與橢圓C交于兩個不同的點A,B,直線PA,PB與x軸分別交于M,N兩點,求證:|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.用a1a2…an表示一個n位數(shù),其中a1,a2,…,an表示各個位上的數(shù),若($\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$)2=$\overline{{a}_{1}{a}_{2}…{a}_{k}{a}_{k+1}…{a}_{n}}$,則稱正整數(shù)$\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$為K數(shù),如(8+1)2=81,(30+25)2=3025,即9和55都是K數(shù),則下面四個命題:
①個位數(shù)的K數(shù)只有9;②45不是K數(shù);③99是一個K數(shù);④10n-1(n∈N*)是一個K數(shù);
正確命題的序號為①.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3.
(1)求p的值;
(2)求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.4月23日是世界讀書日,為提高學生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學生會開展了主題為“讓閱讀成為習慣,讓思考伴隨人生”的實踐活動,校學生會實踐部的同學隨即抽查了學校的40名高一學生,通過調查它們是喜愛讀紙質書還是喜愛讀電子書,來了解在校高一學生的讀書習慣,得到如表列聯(lián)表:
 喜歡讀紙質書不喜歡讀紙質書合計
16420
81220
合計241640
(Ⅰ)根據(jù)如表,能否有99%的把握認為是否喜歡讀紙質書籍與性別有關系?
(Ⅱ)從被抽查的16名不喜歡讀紙質書籍的學生中隨機抽取2名學生,求抽到男生人數(shù)ξ的分布列及其數(shù)學期望E(ξ).
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下列的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知a<b<0,則( 。
A.a2<abB.ab<b2C.a2<b2D.a2>b2

查看答案和解析>>

同步練習冊答案