15.設(shè)P為雙曲線x2-$\frac{y^2}{12}$=1上的一點,F(xiàn)1、F2是該雙曲線的兩個焦點,若|PF1|:|PF2|=3:2,則△PF1F2的面積為12.

分析 利用雙曲線的定義可得|PF1|,|PF2|,再利用勾股定理的逆定理、三角形的面積計算公式即可得出.

解答 解:設(shè)|PF1|=3x,|PF2|=2x,
則3x-2x=2a=2,解得x=2.
∴△PF1F2的三邊長分別為6,4,2$\sqrt{13}$.
∵62+42=(2$\sqrt{13}$)2,∴∠F1PF2=90°.
∴△PF1F2的面積S=$\frac{1}{2}×6×4$=12.
故答案為:12.

點評 本題考查了雙曲線的定義、勾股定理的逆定理、三角形的面積計算公式,考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若cosα=-$\frac{4}{5}$,$α∈({\frac{π}{2},π})$,則$cos({α-\frac{π}{4}})$=-$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某化工廠生產(chǎn)中需依次投放2種化工原料,現(xiàn)已知有5種原料可用,但甲、乙兩種原料不能同時使用,且依次投料時,若使用甲原料,則甲必須先投放,則不同的投放方案有( 。
A.10種B.12種C.15種D.16種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知P是△ABC內(nèi)一點,$\overrightarrow{PB}$+$\overrightarrow{PC}$+2$\overrightarrow{PA}$=0,現(xiàn)將一粒黃豆隨機投入△ABC內(nèi),則該粒黃豆落在△PAC內(nèi)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如下表所示.
文科25
理科103
(1)若在該樣本中從報考文科的學(xué)生中隨機地選出3人召開座談會,試求3人中既有男生也有女生的概率;
(2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?參考公式和數(shù)據(jù):x2=$\frac{n({n}_{11}{n}_{12}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+n+1n+n+2}$.
P(x2≥K00.150.100.050.0250.0100.0050.001
K02.072.713.845.026.647.8810.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,如果sinA=$\sqrt{3}$sinC,B=30°,那么角A=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線交直線x=$\frac{{a}^{2}}{c}$于A,B兩點,若以AB為直徑的圓恰好過焦點F(c,0),則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=lnx+ax2+(2-2a)x+$\frac{1}{4a}$(a>0),若存在三個不相等的正實數(shù)x1,x2,x3,使得$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=\frac{{f({x_3})}}{x_3}$=3成立,則a的取值范圍是($\frac{1}{2e}$,$\frac{\sqrt{2}-1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x,y)=(x-y)2+(4+$\sqrt{1-{x^2}}$+$\sqrt{1-\frac{y^2}{9}}$)2,則f(x,y)的最大值為$28+6\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案