分析 (1)根據(jù)三角形的面積公式以及向量的數(shù)量積的應(yīng)用進行求解即可.
(2)利用三角形的面積以及余弦定理建立方程關(guān)系進行求解,比較大小即可.
解答 解:(1)設(shè)角A,B,C所對的邊分別為a,b,c,
因為2S=$\overrightarrow{AB}$2-$\overrightarrow{BA}$•$\overrightarrow{BC}$.即2×$\frac{1}{2}$acsinB=c2-accosB,…2分
由正弦定理化得sinAsinBsinC=sin2C-sinAcosBsinC,
三角形中sinC=sin(A+B)>0,即有sinAsinB=sin(A+B)-sinAcosB,…4分
亦即sinAsinB=cosAsinB,由sinB>0,得tanA=1,
因為A∈(0,π),即A=$\frac{π}{4}$.…7分
(2)因為a=$\sqrt{5}$,S=1,所以bcsinA=1,即bc=2,…9分
由余弦定理得a2= b2+ c2-2bccosA,得b2+c2=9. …11分
由$\left\{\begin{array}{l}{bc=2\sqrt{2}}\\{^{2}+{c}^{2}=9}\end{array}\right.$得$\left\{\begin{array}{l}{b=2\sqrt{2}}\\{c=1}\end{array}\right.$或$\left\{\begin{array}{l}{b=1}\\{c=2\sqrt{2}}\end{array}\right.$,…13分
所以最短邊的長為1.
點評 本題主要考查解三角形的應(yīng)用以及數(shù)量積的應(yīng)用,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com