分析 (Ⅰ)由求導公式和法則求出f′(x),求出方程f′(x)=0的根,根據(jù)二次函數(shù)的圖象求出f′(x)<0、f′(x)>0的解集,由導數(shù)與函數(shù)單調(diào)性關(guān)系求出f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)由導數(shù)的幾何意義求出f′(0):切線的斜率,由解析式求出f(0)的值,根據(jù)點斜式求出曲線在點(0,f(0))處的切線方程,再化為一般式方程.
解答 解:(Ⅰ)由題意得,f′(x)=3x2-3,由f′(x)=0得x=±1,
當x∈(-1,1)時,f′(x)<0,當x∈(-∞,-1),(1,+∞)時,f′(x)>0,
∴函數(shù)f(x)在(-1,1)上 遞減,在(-∞,-1),(1,+∞)上遞增,
當x=-1時取到極大值是f(-1)=3,當x=1取到極小值f(1)=-1.…(4分)
(Ⅱ)由f′(x)=3x2-3得,f′(0)=-3,
∵f(0)=1,∴曲線在點(0,f(0))處的切線方程是y-1=-3x
即3x+y-1=0.…(8分)
點評 本題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值,以及導數(shù)幾何意義的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4π | B. | 12π | C. | 16π | D. | 64π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1,\frac{4}{3})$ | B. | $(\frac{2}{3},1]$ | C. | $[\frac{2}{3},1]$ | D. | $[1,\frac{4}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AB}$ | B. | $\overrightarrow{DA}$ | C. | $\overrightarrow{BC}$ | D. | $\overrightarrow 0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com