已知函數(shù)f(x)滿足f(
x
+1
)=x+2
x
-3,求函數(shù)f(x),并求f(x)的定義域.
考點(diǎn):函數(shù)解析式的求解及常用方法,函數(shù)的定義域及其求法
專題:配方法,換元法
分析:本題運(yùn)用配湊法,求函數(shù)的解析式,關(guān)鍵是把解析式配成
x
+1
的形式,再用x來代替之.
解答: 解:∵f(
x
+1
)=x+2
x
-3=(
x
+1)2-4
,
∴f(x)=x2-4,又
x
+1≥1
,∴定義域?yàn)閇1,+∞).
點(diǎn)評(píng):配湊法求函數(shù)解析式是常用的一種方法,關(guān)鍵是要把解析式化成與括號(hào)中的式子一樣,初學(xué)者平時(shí)要注意多訓(xùn)練.本題還可以用換元法來求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡下列式子:
(1)
7a2b4
3a6b7
+(
3ab
2a6b4
)3
;
(2)(
4a9
b6
)3+(
3a7
2b5
)4
;
(3)
5x2y6
(2x4y5)2
+
(4x6y)3
10xy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(2+i)m2-
6m
1-i
-2(1-i),當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是(1)虛數(shù);(2)純虛數(shù);(3)零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x) 為“一階比增函數(shù)”.
(1)若f(x)=ax2+ax是“一階比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)若f(x)是“一階比增函數(shù)”,當(dāng)x2>x1>0時(shí),試比較f(x1)+f(x2)與f(x1+x2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=
1
(n+1)2
(n∈N+),記f(n)=(1-a1)(1-a2)…(1-an),試通過計(jì)算f(1),f(2),f(3)的值,推測出f(n)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算由曲線y=9-x2與直線y=x+7圍成的封閉區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若當(dāng)x∈[1,2],y∈[2,3]時(shí),
ax2+2y2
xy
-1>0恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=2,c=3,cosB=
1
4
,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高一某班有學(xué)生45人,其中參加數(shù)學(xué)競賽的有32人,參加物理競賽的有28人,另外有5人兩項(xiàng)競賽均不參加,則該班既參加數(shù)學(xué)競賽又參加物理競賽的有
 
人.

查看答案和解析>>

同步練習(xí)冊(cè)答案