分析 (Ⅰ)取PA的中點(diǎn)F,連結(jié)BF、EF,推導(dǎo)出AD⊥平面PAB,從而AD⊥PA,PA⊥EF,再由等邊三角形性質(zhì)得BF⊥PA,由此能證明BE⊥PA.
(Ⅱ)取AB的中點(diǎn)H,則由平面PAB⊥平面ABCD知PH⊥平面ABCD,設(shè)點(diǎn)D到平面PAC的距離為d,由VP-ACD=VD-PAC,能求出結(jié)果.
解答 證明:(Ⅰ)取PA的中點(diǎn)F,連結(jié)BF、EF,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊥AB,
∴AD⊥平面PAB,
∵PA?平面PAB,∴AD⊥PA,
∵EF∥AD,∴PA⊥EF,
∵△PAB為等邊三角形,∴BF⊥PA,
又BF∩EF=F,∴PA⊥平面BEF,
又BE?平面BEF,∴BE⊥PA.
(Ⅱ)取AB的中點(diǎn)H,則由平面PAB⊥平面ABCD知PH⊥平面ABCD,
又PH=$\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$,${S}_{△ACD}=\frac{1}{2}×4×2$=4,
∴${V}_{P-ACD}=\frac{1}{3}{S}_{△ACD}•PH=\frac{4\sqrt{3}}{3}$,
由(Ⅰ)知PA⊥平面BCEF,F(xiàn)C?平面BCEF,∴PA⊥FC,
又FC=BE=$\sqrt{4+3}$=$\sqrt{7}$,∴${S}_{△PAC}=\frac{1}{2}×\sqrt{7}×2=\sqrt{7}$,
設(shè)點(diǎn)D到平面PAC的距離為d,
由VP-ACD=VD-PAC,得$\frac{4\sqrt{3}}{3}=\frac{1}{3}×\sqrt{7}×d$,
解得d=$\frac{4\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查線線垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$,$\frac{π}{2}$ | B. | $\sqrt{3}$,π | C. | $\sqrt{2}$,$\frac{π}{2}$ | D. | $\sqrt{2}$,π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com