分析 根據函數奇偶性的定義建立了方程關系進行求解即可.
解答 解:要使函數有意義,則$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-a≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{{x}^{2}≤1}\\{{x}^{2}≥a}\end{array}\right.$,
∵f(-x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-a}$=f(x),
∴若函數f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-a}$是奇函數,
則函數f(x)既是奇函數也是偶函數,
則f(x)=0,
即$\left\{\begin{array}{l}{1-{x}^{2}=0}\\{{x}^{2}-a=0}\end{array}\right.$則$\left\{\begin{array}{l}{{x}^{2}=1}\\{{x}^{2}=a}\end{array}\right.$,則a=1,
即要使函數f(x)是奇偶性,則a=1.
點評 本題主要考查函數奇偶性的應用和判斷,利用函數奇偶性的定義建立方程關系是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ①②③④ | D. | ①②③④⑤ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com