A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
分析 a2+b2+4c2=($\frac{1}{2}$a2+$\frac{1}{2}$a2)+($\frac{1}{4}$b2+$\frac{3}{4}$b2)+(c2+3c2),調(diào)整,利用基本不等式,即可得出結(jié)論.
解答 解:設(shè)a2+b2+4c2=($\frac{1}{2}$a2+$\frac{1}{2}$a2)+($\frac{1}{4}$b2+$\frac{3}{4}$b2)+(c2+3c2)
=($\frac{1}{2}$a2+$\frac{1}{4}$b2)+($\frac{1}{2}$a2+c2)+($\frac{3}{4}$b2+3c2)
≥$\frac{1}{\sqrt{2}}$ab+$\sqrt{2}ac$+3bc
∴ab+2ac+3$\sqrt{2}$bc≤$\sqrt{2}$,
當(dāng)且僅當(dāng)a=$\frac{\sqrt{5}}{5}$,b=2c=$\frac{\sqrt{10}}{5}$時(shí),等號(hào)成立.
∴ab+2ac+3$\sqrt{2}$bc的最大值為$\sqrt{2}$.
故選:C.
點(diǎn)評(píng) 本題考查重要不等式的運(yùn)用:求最值,正確變形是關(guān)鍵..
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
數(shù)學(xué)/分 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理/分 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序號(hào) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)/分 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理/分 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
數(shù)學(xué)成績(jī)優(yōu)秀 | 數(shù)學(xué)成績(jī)不優(yōu)秀 | 合計(jì) | |
物理成績(jī)優(yōu)秀 | 5 | 2 | 17 |
物理成績(jī)不優(yōu)秀 | 1 | 12 | 13 |
合計(jì) | 6 | 14 | 20 |
參考數(shù)據(jù) | 當(dāng)Χ2≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián); |
當(dāng)Χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)Χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)Χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓形區(qū)域 | |
B. | 等腰三角形兩腰與半橢圓圍成的區(qū)域 | |
C. | 等腰三角形兩腰與半圓圍成的區(qū)域 | |
D. | 橢圓形區(qū)域 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,5,6} | B. | {1} | C. | {2} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com