2.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),且a1,a2,a5成公比不等于1的等比數(shù)列.
(Ⅰ)求c的值;
(Ⅱ)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求證:若數(shù)列{bn}的前n項(xiàng)和為Sn,則$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

分析 (Ⅰ)由題意可知:an=1+(n-1)c,求得a2=1+c,a5=1+4c.根據(jù)等比數(shù)列等比中項(xiàng)的性質(zhì),求得c=2;
(Ⅱ)由(Ⅰ)可知,an=2n-1,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,根據(jù)“裂項(xiàng)法”即可求得數(shù)列{bn}的前n項(xiàng)和為Sn,Sn=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$<$\frac{1}{2}$,根據(jù)數(shù)列的單調(diào)性,可知當(dāng)n=1時(shí),Sn有最小值$\frac{1}{3}$,可證$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

解答 解:(Ⅰ)∵an+1=an+c,a=1,c為常數(shù),
∴an=1+(n-1)c
∴a2=1+c,a5=1+4c.
又a1,a2,a5成等比數(shù)列,
∴(1+c)2=1+4c,解得c=0或c=2,
當(dāng)c=0時(shí),an+1=an不合題意,舍去.
∴c=2   …(5分)
(Ⅱ)證明:由(Ⅰ)知,an=2n-1,
∴${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[{(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})}]$,
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
∴$\frac{1}{2n+1}$>0,Sn=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$<$\frac{1}{2}$,
由單調(diào)性可知,當(dāng)n=1時(shí),Sn有最小值$\frac{1}{3}$,
∴$\frac{1}{3}$≤Sn<$\frac{1}{2}$…(12分)

點(diǎn)評(píng) 本題考查等數(shù)列通項(xiàng)公式,等比數(shù)列等比中項(xiàng)的性質(zhì),“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,根據(jù)函數(shù)的單調(diào)性求函數(shù)的取值范圍,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知直線x-y+b=0與圓x2+y2=25相切,則b的值是±5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1.
(Ⅰ)若函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)若f(x)≥1在區(qū)間[3,+∞)上恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如表),由最小二乘法求得回歸直線方程$\widehat{y}$=0.72x+58.4.
零件數(shù)x(個(gè))1020304050
加工時(shí)間y71767989
表中有一個(gè)數(shù)據(jù)模糊不清,經(jīng)推斷,該數(shù)據(jù)的準(zhǔn)確值為( 。
A.85B.86C.87D.88

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知某算法的程序框圖如圖所示.
(1)若程序運(yùn)行中輸出的一個(gè)數(shù)組是(5,y),求y的值;
(2)程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=exlnx(e為自然對(duì)數(shù)的底數(shù))
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)令Q(x)=1-$\frac{2{e}^{x}}{ex}$,證明:當(dāng)x>0時(shí)f(x)>Q(x)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某空間幾何體的三視圖如圖所示,則該幾何體的外接球的表面積是52π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.點(diǎn)M的球坐標(biāo)(π,$\frac{π}{3}$,$\frac{π}{3}}$)化為直角坐標(biāo)為( 。
A.(1,0,0)B.$({\frac{{\sqrt{3}}}{4},\frac{3}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{3}}}{4}π,\frac{3}{4}π,\frac{π}{2}})$D.$({\frac{3}{4}π,\frac{{\sqrt{3}}}{4}π,\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球 面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=$\sqrt{2}$,則球O的表面積是4π.

查看答案和解析>>

同步練習(xí)冊(cè)答案