分析 數(shù)列{an-4}是公比為-$\frac{1}{2}$的等比數(shù)列,可得an=4+$(-\frac{1}{2})^{n-1}$,利用求和公式可得:數(shù)列{an}的前n項和Sn=4n+$\frac{2}{3}$$[1-(-\frac{1}{2})^{n}]$,由于對于任意n∈N*,都有P(Sn-4n)∈[1,3],可得$\frac{1}{1-(-\frac{1}{2})^{n}}$≤$\frac{2p}{3}$≤$\frac{3}{1-(-\frac{1}{2})^{n}}$.對n分類討論,利用數(shù)列的單調(diào)性與不等式的性質(zhì)即可得出.
解答 解:∵數(shù)列{an-4}是公比為-$\frac{1}{2}$的等比數(shù)列,∴an-4=(a1-4)×$(-\frac{1}{2})^{n-1}$,a1=5,
∴an=4+$(-\frac{1}{2})^{n-1}$,
∴數(shù)列{an}的前n項和Sn=4n+$\frac{1-(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})}$=4n+$\frac{2}{3}$$[1-(-\frac{1}{2})^{n}]$,
∴Sn-4n=$\frac{2}{3}$$[1-(-\frac{1}{2})^{n}]$,
由于對于任意n∈N*,都有P(Sn-4n)∈[1,3],
∴$\frac{1}{1-(-\frac{1}{2})^{n}}$≤$\frac{2p}{3}$≤$\frac{3}{1-(-\frac{1}{2})^{n}}$.
∴
n為奇數(shù)時,$\frac{1}{1-(-\frac{1}{2})^{n}}$∈$[\frac{2}{3},1)$;
n為偶數(shù)時,$\frac{1}{1-(-\frac{1}{2})^{n}}$∈$(1,\frac{4}{3}]$.
∴$\frac{4}{3}$≤$\frac{2p}{3}$≤2,解得2≤p≤3.
則實(shí)數(shù)P的取值范圍是[2,3].
故答案為:[2,3].
點(diǎn)評 本題考查了等差數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性、不等式的性質(zhì),考查了分類討論方法、推理能力與計算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+1,$g(x)=\frac{{x({x+1})}}{x}$ | B. | f(x)=1,$g(x)=\frac{x}{|x|}$ | C. | y=|x|,$y=\sqrt{x^2}$ | D. | $f(x)=\sqrt{x^2}+1$,g(x)=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -1 | C. | 0 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3<x<2 | B. | -2<x<3 | C. | -5<x<1 | D. | -1<x<5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com