分析 已知等式利用完全平方公式及同角三角函數(shù)間的基本關系變形,整理求出sinαcosα的值,再利用完全平方公式及同角三角函數(shù)間的基本關系求出sinα-cosα的值,原式被開方數(shù)分子分母乘以分子,利用二次根式性質及同角三角函數(shù)間基本關系化簡,整理后將sinα-cosα的值代入計算即可求出值.
解答 解:∵α是第二象限的角,且sin4α+cos4α=$\frac{5}{8}$,即(sin2α+cos2α)2-2sin2αcos2α=1-2sin2αcos2α=$\frac{5}{8}$,
∴cosα<0,sinα>0,sinαcosα=-$\frac{\sqrt{3}}{4}$,
∴(sinα-cosα)2=1-2sinαcosα=1+$\frac{\sqrt{3}}{2}$,即sinα-cosα=$\sqrt{1+\frac{\sqrt{3}}{2}}$,
則原式=cosα•$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$+sinα•$\sqrt{\frac{(1-cosα)^{2}}{1-co{s}^{2}α}}$=-1+sinα+1-cosα=sinα-cosα=$\sqrt{1+\frac{\sqrt{3}}{2}}$.
點評 此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 96 | B. | 120 | C. | 132 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12-π | B. | 8+2π | C. | 16-π | D. | 12+2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com