15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=3,a1+a3+a5=15.
(1)求an及Sn;
(2)設(shè)bn=$\frac{1}{{a}_{n+1}^{2}-1}$(n∈N*),設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,證明:Tn<$\frac{1}{4}$.

分析 (1){an}是等差數(shù)列,且a2=3,a1+a3+a5=15,求得,a1=1,d=2,求得an及Sn,
(2)寫出bn的通項(xiàng)公式,利用裂項(xiàng)法求其前n項(xiàng)和Tn=$\frac{1}{4}$(1-$\frac{1}{n+1}$),即可證得Tn<$\frac{1}{4}$.

解答 解:(1){an}為等差數(shù)列,a2=3,a1+a3+a5=15,
即3a2+3d=15,
∴d=2,a1=1,
an=2n-1,
Sn=n2;
(2)證明:bn=$\frac{1}{{a}_{n+1}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
數(shù)列{bn}的前n項(xiàng)和Tn,
Tn=$\frac{1}{4}$(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$),
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)<$\frac{1}{4}$;
∴Tn<$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考察等差數(shù)列求通項(xiàng)公式以及利用裂項(xiàng)法求數(shù)列的前n項(xiàng)和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知不等式$\sqrt{(x-a)^{2}+4(lnx-a-\frac{1}{2})^{2}}$≥$\frac{3\sqrt{5}}{5}$恒成立,則實(shí)數(shù)a的取值為( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在等差數(shù)列{an}中,若a3+a8+a13=12,a3a8a13=28.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a23的值;
(3)-$\frac{16}{5}$是否是數(shù)列{an}中的項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一個(gè)周期內(nèi),當(dāng)x=$\frac{π}{4}$時(shí)y取最大值1,當(dāng)x=$\frac{7π}{12}$時(shí)y取最小值-1.
(1)求函數(shù)的解析式y(tǒng)=f(x);
(2)當(dāng)x∈[$\frac{5π}{36}$,$\frac{19π}{36}$]時(shí).求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)=x3,g(x)=-x2+x-$\frac{2}{9}$a,若存在x0∈[-1,$\frac{a}{3}$](a>0),使得f(x0)<g(x0),則正數(shù)a的取值范圍是$(0,\frac{\sqrt{21}-3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若直線(3-a)x+(2a-1)y+7=0與直線(2a+1)x+(a+5)y-6=0互相垂直,則a的值為$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線l1:x-my+2=0,直線l2的方向向量$\overrightarrow{a}$=(-1,-2),若l1⊥l2,則m的值為( 。
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知一圓C的圓心為C(2,-1),且該圓被直線l:x-y-1=0截得的弦長(zhǎng)是2$\sqrt{2}$,求該圓的方程和過(guò)弦兩端點(diǎn)的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\sqrt{{{log}_{\frac{3}{4}}}(3x-1)}$的定義域是( 。
A.[1,3]B.$({-∞,\frac{1}{3}}]$C.$({\frac{1}{3},\frac{2}{3}}]$D.$({\frac{2}{3},+∞})$

查看答案和解析>>

同步練習(xí)冊(cè)答案