精英家教網 > 高中數學 > 題目詳情
16.已知函數f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤0}\\{-lo{g}_{3}x,x>0}\end{array}\right.$,且f(a)=-2,則f(7-a)=(  )
A.-$\frac{7}{4}$B.-$\frac{5}{4}$C.-$\frac{3}{4}$D.-log37

分析 利用分段函數性質求解.

解答 解:∵函數f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤0}\\{-lo{g}_{3}x,x>0}\end{array}\right.$,且f(a)=-2,
∴當a≤0時,f(a)=2a-2=-2,無解;
當a>0時,f(a)=-log3a=-2,解得a=9,
∴f(7-a)=f(-2)=2-2-2=-$\frac{7}{4}$.
故選:A.

點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意分段函數的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

6.已知函數f(x)=$\left\{{\begin{array}{l}{{3^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$,若f(x0)>0,則x0的取值范圍是x0>1或x0≤0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,12),$\overrightarrow{c}$=(4,-3),若向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,則向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,其中正視圖與側視圖都是斜邊長為2的直角三角形,俯視圖是半徑為1的$\frac{1}{4}$圓周和兩條半徑,則這個幾何體的體積為( 。
A.$\frac{\sqrt{3}}{12}$πB.$\frac{\sqrt{3}}{6}$πC.$\frac{\sqrt{3}}{4}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.求和12-22+32-42+…+(-1)n+1n2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知x2+y2=1,求u=$\sqrt{3x+4y+5}$+$\sqrt{4x+3y+5}$的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.在△ABC中,a,b,c分別是角A,B,C的對邊,且A=$\frac{2π}{3}$,b+2c=8,則當△ABC的面積取得最大值時a的值為( 。
A.2$\sqrt{6}$B.2$\sqrt{7}$C.$\sqrt{14}$D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.在Rt△ABC中,C為直角,A,B,C所對的邊的長分別為a,b,c,則c2=a2+b2,類比在三棱錐中有何結論.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.規(guī)定記號“*”表示一種運算,a*b=a2+ab,設函數f(x)=x*2,且關于x的方程f(x)=ln|x+1|(x≠-1)恰有4個互不相等的實數根x1,x2,x3,x4,則x1+x2+x3+x4=-4.

查看答案和解析>>

同步練習冊答案