12.已知命題p:曲線$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{1+m}$=1表示焦點在y軸上的橢圓;命題q:函數(shù)y=x2-mx-2在x∈(-∞,1)上單調(diào)遞減,若¬p∨q是假命題,求實數(shù)m的取值范圍.

分析 分別求出關(guān)于p,q成立的m的范圍,根據(jù)¬p∨q是假命題,得到¬p和q至少有一個為假,通過討論p,q的真假,求出m的范圍即可.

解答 解:關(guān)于命題p:曲線$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{1+m}$=1表示焦點在y軸上的橢圓,
則1+m>3-m>0,解得:1<m<3;
關(guān)于命題q:函數(shù)y=x2-mx-2在x∈(-∞,1)上單調(diào)遞減,
則對稱軸x=$\frac{m}{2}$≥1,解得:m≥2,
若¬p∨q是假命題,則¬p和q至少有一個為假,
¬p,q都是假命題即p真q假時:$\left\{\begin{array}{l}{1<m<3}\\{m<2}\end{array}\right.$,解得:1<m<2,
¬p假q真即p真q真時:$\left\{\begin{array}{l}{1<m<3}\\{m≥2}\end{array}\right.$,解得:2≤m<3,
¬p真q假即p假q假時:$\left\{\begin{array}{l}{m≥3或m≤1}\\{m<2}\end{array}\right.$,解得:m≤1,
綜上,實數(shù)m的取值范圍是:m<3.

點評 本題考查了復(fù)合命題的判斷,考查橢圓和二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求方程$\left\{\begin{array}{l}{x=a•co{t}^{3}t}\\{y=a•si{n}^{3}t}\end{array}\right.$,(0≤t≤2π)確定的二階導(dǎo)數(shù)$\frac{ovrhdkw^{2}y}{d{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(1-2x)=$\sqrt{1-{5}^{x}}$,則f(1)等于( 。
A.0B.1C.$\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點A(5,3),B(-1,-5).過線段AB的中點且傾斜角為120°的直線方程( 。
A.y-1=-$\sqrt{3}$(x-2)B.y-1=-$\frac{1}{2}$(x+2)C.y+1=-$\sqrt{3}$(x-2)D.y+1=-$\frac{1}{2}$(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}中,a1=2,an+1=4an-3n十1,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l的傾斜角是120°,則這條直線的一個法向量為($\sqrt{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于α的方程$\frac{\sqrt{2}}{2}$sin($\frac{π}{4}$+α)+$\frac{\sqrt{6}}{2}$sin($\frac{π}{4}$-α)=2m-3有解,則m的取值范圍$\frac{3-\sqrt{2}}{2}$≤m≤$\frac{3+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(k+1)ax-a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求實數(shù)k的值;
(2)當(dāng)a>1時,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)>0對任意x∈(1,3)都成立的實數(shù)t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)+3m-2在[1,+∞)上的最小值是-4,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(cos2x,sin2x),$\overrightarrow$=(cosα,sinα),其中x∈R,α∈[0,2π].
(1)計算|$\overrightarrow{a}$|=1;
(2)若$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow$,則|$\overrightarrow{c}$|的取值范圍是[0,2].

查看答案和解析>>

同步練習(xí)冊答案