7.設(shè)$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),α∈(0,π),β∈(π,2π),設(shè)$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為θ1,$\overrightarrow$與$\overrightarrow{c}$的夾角為θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{8}$的值.

分析 由條件利用兩個(gè)向量的夾角公式求得θ1和θ2的值,再根據(jù)θ12=$\frac{π}{6}$,可得 $\frac{α-β}{8}$=$\frac{π}{4}$-$\frac{π}{3}$,再利用兩角差的正弦公式求得sin$\frac{α-β}{8}$=sin($\frac{π}{4}$-$\frac{π}{3}$)的值.

解答 解:由題意可得cosθ1=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{1+cosα}{\sqrt{2+2cosα}}$=$\sqrt{\frac{1+cosα}{2}}$=cos$\frac{α}{2}$,α∈(0,π),∴θ1=$\frac{α}{2}$.
cosθ2=$\frac{\overrightarrow•\overrightarrow{c}}{|\overrightarrow|•|\overrightarrow{c}|}$=$\frac{1-cosβ}{\sqrt{2-2cosβ}}$=$\sqrt{\frac{1-cosβ}{2}}$=sin$\frac{β}{2}$=cos($\frac{β}{2}$-$\frac{π}{2}$),β∈(π,2π),∴θ2=$\frac{β}{2}$-$\frac{π}{2}$.
再根據(jù)θ12=$\frac{π}{6}$,可得 $\frac{α-β}{2}$=-$\frac{π}{3}$,∴$\frac{α-β}{8}$=-$\frac{π}{12}$=$\frac{π}{4}$-$\frac{π}{3}$,
∴sin$\frac{α-β}{8}$=sin($\frac{π}{4}$-$\frac{π}{3}$)=sin$\frac{π}{4}$cos$\frac{π}{3}$-cos$\frac{π}{4}$sin$\frac{π}{3}$=$\frac{\sqrt{2}}{4}$-$\frac{\sqrt{6}}{4}$=$\frac{\sqrt{2}-\sqrt{6}}{4}$.

點(diǎn)評(píng) 本題主要考查用兩個(gè)向量的數(shù)量積表示兩個(gè)向量的夾角,兩角和差的正弦公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tanα=$\sqrt{3}$,π<α<$\frac{3π}{2}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知角α的終邊過點(diǎn)P(-4,3),則2sinα+cosα的值是( 。
A.1或-1B.$\frac{2}{5}$或$-\frac{2}{5}$C.1或$-\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>1,b>1,c>1,且ab=10,求證:logac+logbc≥4lgc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\left\{\begin{array}{l}{7x-5y-23≤0}\\{x+7y-11≤0}\\{4x+y+10≥0}\end{array}\right.$,則x2+y2的最大值為37,最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,半徑為1的圓O的直徑為AB,點(diǎn)P是圓O上一動(dòng)點(diǎn),角x的始邊為射線OB,終邊為射線OP,過點(diǎn)O作BP的垂線OE,垂足為E,延長(zhǎng)OE交圓O于點(diǎn)F,過點(diǎn)F作OB的垂線FN,垂足為N,則|OE|+|NF|的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線y=a與曲線y=2(x-1)和y=x+ex的交點(diǎn)分別為A,B,則線段|AB|的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a,b,c均為正數(shù),若a+b+c,b+c-a,c+a-b,a+b-c依次成等比數(shù)列,且公比為q,則q3+q2+q值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.甲乙丙丁四位同學(xué)各自對(duì)A,B兩變量的線性相關(guān)性進(jìn)行分析,并用回歸分析方法得到相關(guān)系數(shù)r與殘差平方和m,如表則哪位同學(xué)的試驗(yàn)結(jié)果體現(xiàn)A,B兩變量更強(qiáng)的線性相關(guān)性( 。
 
r0.820.780.690.85
m115106124103
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案