16.正三棱柱ABC-A1B1C1側(cè)面的三條對(duì)角線AB1,BC1,CA1中,若A1C⊥AB1,求證:AB1⊥BC1

分析 取AC的中點(diǎn)O,A1C1的中點(diǎn)D,連接OD,以O(shè)為原點(diǎn),分別以O(shè)C,OB,OD為x,y,z軸正方向建立空間直角坐標(biāo)系,設(shè)AB=1,AA1=x,則可得:$\overrightarrow{{A}_{1}C}$=(1,0,-x),$\overrightarrow{A{B}_{1}}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,x),$\overrightarrow{B{C}_{1}}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,x),由A1C⊥AB1,解得:x=$\frac{\sqrt{2}}{2}$,可證$\overrightarrow{A{B}_{1}}$•$\overrightarrow{B{C}_{1}}$=0,從而證明AB1⊥BC1

解答 證明:如圖,取AC的中點(diǎn)O,A1C1的中點(diǎn)D,連接OD,以O(shè)為原點(diǎn),分別以O(shè)C,OB,OD為x,y,z軸正方向建立空間直角坐標(biāo)系,設(shè)AB=1,AA1=x,則可得:A(-$\frac{1}{2}$,0,0),C($\frac{1}{2}$,0,0),
B(0,$\frac{\sqrt{3}}{2}$,0),A1(-$\frac{1}{2}$,0,x),C1($\frac{1}{2}$,0,x),
B1(0,$\frac{\sqrt{3}}{2}$,x),
∴可得:$\overrightarrow{{A}_{1}C}$=(1,0,-x),$\overrightarrow{A{B}_{1}}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,x),
$\overrightarrow{B{C}_{1}}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,x).
∵A1C⊥AB1,
∴$\frac{1}{2}$-x2=0,解得:x=$\frac{\sqrt{2}}{2}$,
∴$\overrightarrow{A{B}_{1}}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{B{C}_{1}}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$).
∵$\overrightarrow{A{B}_{1}}$•$\overrightarrow{B{C}_{1}}$=$\frac{1}{2}×\frac{1}{2}+\frac{\sqrt{3}}{2}×(-\frac{\sqrt{3}}{2})+\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}$=0,
∴AB1⊥BC1.得證.

點(diǎn)評(píng) 本題主要考查了線面垂直的性質(zhì)和判定,同時(shí)考查了空間想象能力、運(yùn)算求解的能力、以及轉(zhuǎn)化與劃歸的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=2sin(2x+φ),φ∈(0,$\frac{π}{2}$)對(duì)任意x有f(x)≤|f($\frac{π}{6}$)|
(1)求f(x)圖象對(duì)稱軸方程和對(duì)稱中心.
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,圓O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C、B在圓O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為($\frac{12}{13}$,-$\frac{5}{13}$),∠AOC=α,若|BC|=1,則$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值為( 。
A.$\frac{5}{13}$B.$\frac{12}{13}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}中,已知a1=$\frac{1}{4}$,an+1=$\sqrt{{a}_{n}-{{a}_{n}}^{2}}$.
(1)證明:an<an+1<$\frac{1}{2}$;
(2)證明:當(dāng)n≥2時(shí),($\frac{{a}_{n+1}}{{a}_{n}}$)${\;}^{{2}^{n}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.時(shí)代廣場(chǎng)有商鋪200個(gè),當(dāng)月租金為5000元時(shí),每月只有一半的商鋪被租出,為提高出租率,開發(fā)商將每個(gè)商鋪的月租金以100元為一檔向下浮動(dòng),則每向下浮動(dòng)一個(gè)檔位,就可以多山出5個(gè)商鋪,求解下列問題.
(1)寫出開發(fā)商的月租金收入y和每個(gè)商鋪的月租金下浮檔數(shù)x之間的函數(shù)y的函數(shù)關(guān)系式.
(2)當(dāng)下浮多少檔時(shí),月租金收入有最大值?最大值是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知不共線向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{AB}$=t$\overrightarrow{a}$-$\overrightarrow$(t∈R),$\overrightarrow{AC}$=2$\overrightarrow{a}$+3$\overrightarrow$,若A,B,C三點(diǎn)共線,則實(shí)數(shù)t=(  )
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={1,2,3},B={2,3,5},則A∩B=( 。
A.{1,5}B.{1,2,5}C.{2,3}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(x+3y)3(2x-y)5的展開式中所有項(xiàng)的系數(shù)和是64.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.($\frac{1}{3}$)${\;}^{lo{g}_{3}2}$+(0.25)${\;}^{-\frac{1}{2}}$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案