分析 (1)由題意可得函數(shù)的周期為π,φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$),再根據(jù)正弦函數(shù)的圖象的對(duì)稱性,求得它的對(duì)稱軸方程和對(duì)稱中心.
(2)由條件利用正弦函數(shù)的減區(qū)間求得當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)單調(diào)減區(qū)間.
解答 解:(1)f(x)=2sin(2x+φ),φ∈(0,$\frac{π}{2}$)的周期為$\frac{2π}{2}$=π,
對(duì)任意x有f(x)≤|f($\frac{π}{6}$)|,故$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z.
即φ=kπ+$\frac{π}{6}$,k∈Z,又φ∈(0,$\frac{π}{2}$),
∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$),
令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,可得函數(shù)的圖象的對(duì)稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z.
令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,可得函數(shù)的圖象的對(duì)稱中心為($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z.
(2)對(duì)于f(x)=2sin(2x+$\frac{π}{6}$),令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,故函數(shù)的減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
再結(jié)合x∈[0,$\frac{π}{2}$],可得函數(shù)的減區(qū)間為[$\frac{π}{6}$,$\frac{π}{2}$].
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性以及它的圖象的對(duì)稱性,正弦函數(shù)的單調(diào)性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com