16.下列圖象是函數(shù)y=$\left\{\begin{array}{l}{x^2},x<0\\ x-1,x≥0\end{array}$的圖象的是( 。
A.B.C.D.

分析 從單調(diào)性上分段判斷函數(shù)圖象,

解答 解:當(dāng)x<0時(shí),y=x2,為二次函數(shù),對(duì)稱軸為x=0,故y=x2在(-∞,0)上是減函數(shù),
當(dāng)x≥0時(shí),y=x-1,為一次函數(shù),且是增函數(shù),f(0)=-1,
故選:C.

點(diǎn)評(píng) 本題考查了分段函數(shù)的圖象,基本初等函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的圖象如圖所示,若函數(shù)g(x)=3[f(x)]3-4f(x)+m在x$∈[-\frac{π}{2},\frac{π}{2}]$上有4個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{13}{8}$,$\frac{16}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,目標(biāo)函數(shù)z=3x+y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=-12,a7=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn及其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2+bx+2(a,b∈R)
(1)若此二次函數(shù)f(x)的最小值為f(-1)=1,求f(x)的解析式,并寫出其單調(diào)區(qū)間;
(2)在(1)的條件下,f(x)>x+m在區(qū)間[1,3]上恒成立,試求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2-2kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,5]∪[20,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=lgxC.$f(x)={({\frac{1}{2}})^x}$D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(-1,0),F(xiàn)2(1,0),并且經(jīng)過點(diǎn)M(1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如果直線y=x+m與這個(gè)橢圓交于兩個(gè)不同的點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知F1,F(xiàn)2是橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn),橢圓Γ的離心率$e=\frac{{\sqrt{2}}}{2}$,P(x0,y0)是Γ上異于左右頂點(diǎn)的任意一點(diǎn),且△PF1F2的面積的最大值為1.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)直線l是橢圓在點(diǎn)P處的切線,過F2作PF2的垂線,交直線l相交于Q,求證:點(diǎn)Q落在一條定直線m上,并求直線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案