12.求極限:
(1)$\underset{lim}{h→0}$($\frac{1}{x+h}$-$\frac{1}{x}$)$\frac{1}{h}$;  
(2)$\underset{lim}{x→∞}$$\frac{100{x}^{2}}{{x}^{2}-5x-100}$;
(3)$\underset{lim}{x→∞}$(1-$\frac{1}{x}$)(2+$\frac{1}{{x}^{2}}$);
(4)$\underset{lim}{x→+∞}$x($\sqrt{{x}^{2}+1}$-x);
(5)$\underset{lim}{n→∞}$(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$).

分析 (1)($\frac{1}{x+h}$-$\frac{1}{x}$)$\frac{1}{h}$=$-\frac{1}{(x+h)x}$,從而解得;
(2)$\frac{100{x}^{2}}{{x}^{2}-5x-100}$=$\frac{100}{1-\frac{5}{x}-\frac{100}{{x}^{2}}}$,從而解得;
(3)$\underset{lim}{x→∞}$(1-$\frac{1}{x}$)(2+$\frac{1}{{x}^{2}}$)=1•2;
(4)x($\sqrt{{x}^{2}+1}$-x)=$\frac{x}{\sqrt{{x}^{2}+1}+x}$,從而解得;
(5)(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$)=$\frac{1(1-\frac{1}{{2}^{n+1}})}{1-\frac{1}{2}}$,從而解得;

解答 解:(1)$\underset{lim}{h→0}$($\frac{1}{x+h}$-$\frac{1}{x}$)$\frac{1}{h}$
=$\underset{lim}{h→0}$($-\frac{1}{(x+h)x}$)=-$\frac{1}{{x}^{2}}$;
(2)$\underset{lim}{x→∞}$$\frac{100{x}^{2}}{{x}^{2}-5x-100}$
=$\underset{lim}{x→∞}$$\frac{100}{1-\frac{5}{x}-\frac{100}{{x}^{2}}}$=100;
(3)$\underset{lim}{x→∞}$(1-$\frac{1}{x}$)(2+$\frac{1}{{x}^{2}}$)
=1•2=2;
(4)$\underset{lim}{x→+∞}$x($\sqrt{{x}^{2}+1}$-x)
=$\underset{lim}{x→+∞}$$\frac{x}{\sqrt{{x}^{2}+1}+x}$=$\frac{1}{2}$;
(5)$\underset{lim}{n→∞}$(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$)
=$\underset{lim}{n→∞}$($\frac{1(1-\frac{1}{{2}^{n+1}})}{1-\frac{1}{2}}$)=2.

點評 本題考查了極限的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)是R上最小正周期為2的奇函數(shù),且當0≤x≤1時,f(x)=x-x2,則滿足f(log2x)>0的實數(shù)x的取值集合為( 。
A.{x|22k-1<x<22k,k∈Z}B.{x|22k<x<22k+1,k∈Z}
C.{x|22k-1<x<22k+1,k∈Z}D.{x|22k<x<22k+2,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)是定義在[-2,2]上的偶函數(shù),當x≥0時,f(x)單調(diào)遞減,若f(1-m)<f(m)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若關(guān)于x的方程1g(x-1)+1g(3-x)=lg(x-a)有兩個不同的解,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的是( 。
A.y=sinx的遞增區(qū)間是[2kπ,2kπ+$\frac{π}{2}$](k∈Z)
B.y=sinx在第一象限是增函數(shù)
C.y=sinx在[-$\frac{π}{2},\frac{π}{2}$]上是增函數(shù)
D.y=sinx關(guān)于點($\frac{π}{2}$,1)中心對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={y|y=x${\;}^{\frac{1}{2}}$,-1≤x≤0},B={y|y=2-$\frac{1}{x}$,0<x≤1},則集合A∪B=(  )
A.(-∞,1]B.[-1,1]C.D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={y∈R|y=x},集合N={y∈R|y=x2},則M∩N=( 。
A.RB.C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是實數(shù)集上的奇函數(shù),f(x+3)=-f(x),且當0<x<1時,f(x)=x,則f(-6.4)=( 。
A.0.4B.-0.4C.0.6D.-0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.作出下列函數(shù)的圖象,并寫出函數(shù)的定義域:
(1)y=2x;
(2)y=$\frac{1}{x}$;
(3)y=x2,x∈[-1,2];
(4)y=-x+1.

查看答案和解析>>

同步練習(xí)冊答案