8.已知0<x<$\frac{π}{2}$,則函數(shù)$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$的最小值是2$\sqrt{3}$.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵0<x<$\frac{π}{2}$,
則函數(shù)$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$≥2$\sqrt{{3}^{si{n}^{2}x+co{s}^{2}x}}$=2$\sqrt{3}$,當且僅當sin2x=cos2x,x=$\frac{π}{4}$時取等號.
∴函數(shù)$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$的最小值是2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點評 本題考查了基本不等式的性質(zhì)、函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{4x+y≤10}\\{4x+3y≤20}\\{x≥0}\\{y≥0}\end{array}\right.$,則2x+y的最大值為$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知數(shù)列{an}滿足an>1,過點(an,0)的直線ln與圓x2+y2=1在第一象限相切于點Pn,若記Pn的橫坐標為bn,則$\frac{{a}_{1}_{1}+{a}_{2}_{2}+..+{a}_{n}_{n}}{({a}_{1}{a}_{2}…{a}_{n})(_{1}_{2}…_{n})}$等于( 。
A.2-21-nB.2n-1C.1D.n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=a-$\frac{{2}^{x}+1}$,且f(0)=0,f(1)=$\frac{1}{3}$.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若a=30.5,b=logπ3,c=log30.5,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若存在x∈(0,+∞),使不等式ex(x2-x+1)(ax+3a-1)<1成立,則(  )
A.0$<a<\frac{1}{3}$B.a$<\frac{2}{e+1}$C.a$<\frac{2}{3}$D.a$<\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差為-1,前n項和為Sn,且a3+a8+a11=-4.
(Ⅰ)求數(shù)列{an}的通項公式an與前n項和Sn;
(Ⅱ)從數(shù)列{an}的前五項中抽取三項按原來順序恰為等比數(shù)列{bn}的前三項,記數(shù)列{anbn}的前n項和為 Tn,若存在m∈N*,使得對任意n∈N*,總有Sn<Tm+λ成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的最大值是10,f(x)的圖象經(jīng)過點(0,5),且相鄰兩條對稱軸間的距離是$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將f(x)的圖象向右平移$\frac{π}{6}$個單位長度后得到g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,ABCDEF是邊長為2的正六邊形,則下列命題成立的是( 。
A.$\overrightarrow{CA}$+$\overrightarrow{CE}$=$\overrightarrow{CF}$B.$\overrightarrow{CE}$-$\overrightarrow{AF}$=$\overrightarrow{AB}$C.$\overrightarrow{BD}$•$\overrightarrow{FD}$=0D.$\overrightarrow{CD}$•($\overrightarrow{AB}$-$\overrightarrow{AE}$-$\overrightarrow{EF}$)=-6

查看答案和解析>>

同步練習冊答案