A. | $\overrightarrow{CA}$+$\overrightarrow{CE}$=$\overrightarrow{CF}$ | B. | $\overrightarrow{CE}$-$\overrightarrow{AF}$=$\overrightarrow{AB}$ | C. | $\overrightarrow{BD}$•$\overrightarrow{FD}$=0 | D. | $\overrightarrow{CD}$•($\overrightarrow{AB}$-$\overrightarrow{AE}$-$\overrightarrow{EF}$)=-6 |
分析 利用正六邊形的性質(zhì)和向量的有關(guān)知識(shí)逐個(gè)分析選項(xiàng)判斷.
解答 解:四邊形CAFE不是平行四邊形,∴$\overrightarrow{CA}+\overrightarrow{CE}$≠$\overrightarrow{CF}$,故A錯(cuò)誤;
$\overrightarrow{CE}-\overrightarrow{AF}$=$\overrightarrow{CE}-\overrightarrow{CD}$=$\overrightarrow{DE}$=-$\overrightarrow{AB}$,故B錯(cuò);
∵△BDF是等邊三角形,∴BD與FD不垂直,∴$\overrightarrow{BD}•\overrightarrow{FD}$≠0,故C錯(cuò)誤;
連結(jié)FB,則BF=2$\sqrt{3}$,∠AFB=30°,∴$\overrightarrow{CD}•$($\overrightarrow{AB}-\overrightarrow{AE}-\overrightarrow{EF}$)=$\overrightarrow{CD}•$$\overrightarrow{FB}$=$\overrightarrow{AF}•\overrightarrow{FB}$=2$\sqrt{3}$×2×cos150°=-6.故D正確.
故選D.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,向量的線性運(yùn)算的幾何意義,正六邊形的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 等腰直角三角形 | C. | 鈍角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<c<b | B. | b<c<a | C. | a<b<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (9,49) | B. | (13,49) | C. | (9,25) | D. | (3,7) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com