18.對于函數(shù)f(x),若定義域內(nèi)存在實數(shù)x滿足f(-x)=-f(x),則稱f(x)為“限制奇函數(shù)”,
(1)試判斷f(x)=x2+2x-4是否為“限制奇函數(shù)”?并說明理由;
(2)設f(x)=2x+m是定義在[-1,2]上的“限制奇函數(shù)”,求實數(shù)m的取值范圍;
(3)設f(x)=4x-m•2x+1+m2-3是定義在R上的“限制奇函數(shù)”,求實數(shù)m的取值范圍.

分析 (1)令f(-x)=-f(x),根據(jù)方程是否有解得出結(jié)論;
(2)令方程f(-x)=-f(x)有解得出m的范圍;
(3)使用換元法得出方程有解,根據(jù)二次函數(shù)的性質(zhì)得出.

解答 解:(1)令f(-x)=-f(x)得x2-2x-4=-x2-2x+4,
∴x2-4=0,顯然方程有解,
∴f(x)=x2+2x-4是“限制奇函數(shù)“.
(2)∵f(x)=2x+m是定義在[-1,2]上的“限制奇函數(shù)”,
∴f(-x)=-f(x)在[-1,2]上有解.
即2-x+m=-2x-m在[-1,2]上有解.即m=-$\frac{{2}^{x}+\frac{1}{{2}^{x}}}{2}$在[-1,2]上有解,
令t=2x,g(t)=-$\frac{t+\frac{1}{t}}{2}$,則$\frac{1}{2}$≤t≤4.
則g(t)在[$\frac{1}{2}$,1]上是增函數(shù),在(1,4]上是減函數(shù),
∵g($\frac{1}{2}$)=-$\frac{5}{4}$,g(1)=-1,g(4)=-$\frac{17}{8}$.
∴-$\frac{17}{8}$≤g(t)≤-1.
即m的取值范圍是[-$\frac{17}{8}$,-1].
(3)∵f(x)是“局部奇函數(shù)”,∴f(-x)=-f(x)有解,
∴4-x-m2-x+1+m2-3=-(4x-m2x+1+m2-3)有解,
∴4x+4-x-2m(2x+2-x)+2m2-6=0有解,
設t=2x+2-x,則t=2x+2-x≥2,
∴方程t2-2m?t+2m2-8=0在[2,+∞)上有解,
設g(t)=t2-2m?t+2m2-8,
則g(t)的圖象的對稱軸為x=m,開口向上
∴①若m≥2,則△=4m2-4(2m2-8)≥0,
即m2≤8,解得2≤m≤2$\sqrt{2}$.
②若m<2,要使t2-2m?t+2m2-8=0在t≥2時有解,
∴$\left\{\begin{array}{l}{m<2}\\{g(2)<0}\\{△>0}\end{array}\right.$,∴$\left\{\begin{array}{l}{m<2}\\{{m}^{2}-2m-2<0}\\{-2\sqrt{2}<m<2\sqrt{2}}\end{array}\right.$,解得1-$\sqrt{3}$≤m<2.
綜上,m的取值范圍是[1-$\sqrt{3}$,2$\sqrt{2}$].

點評 本題考查了對新定義的理解,換元法解題思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,已知a=4cm,B=60°,A=45°,則b=2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項和為Sn,若S9=27,則a4+a6=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖四個游戲盤(各正方形邊長和圓的直徑都是單位1),如果撒一粒黃豆落在陰影部分,則可中獎,小明希望中獎,則應選擇的游戲盤是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosx,sinx)$,$\overrightarrow c=(sinx+2sinα,cosx+2cosα)$,其中0<α<x<π
(1)若$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且$\overrightarrow a⊥\overrightarrow c$,求tan2α的值;
(2)若$α=\frac{π}{4}$,求函數(shù)$f(x)=\overrightarrow b•\overrightarrow c$的最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為60°,且$|\overrightarrow{AB}|=|\overrightarrow{AC}|=2$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實數(shù)λ的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)滿足:對任意的x1、x2(x1≠x2),均有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,則(  )
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(60.5)<f(0.76)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設i為虛數(shù)單位,復數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為( 。
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$x2+lnx,求函數(shù)f(x)在區(qū)間[1,e]上的最大值、最小值.

查看答案和解析>>

同步練習冊答案