14.實數(shù)集{0,1,x2-x}中,x不能取得的值為:0,1,$\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$.

分析 利用集合中元素的互異性求解.

解答 解:實數(shù)集{0,1,x2-x}中,
x2-x≠0,且x2-x≠1,
解得x≠0,x≠1,x≠$\frac{1±\sqrt{5}}{2}$.
故答案為:0,1,$\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$.

點評 本題考查集合中元素的確定,是基礎題,解題時要認真審題,注意集合中元素的互異性、無序性、確定性的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設函數(shù)$f(x)=\left\{\begin{array}{l}2x-3,x≥0\\{2^x}-1,x<0\end{array}\right.$,則f(f(1))=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,|an+1-an|=$\frac{1}{{2}^{n}}$,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設Sn是等差數(shù)列{an}的前n項和,若$\frac{{S}_{5}}{{S}_{3}}$=3,則$\frac{{S}_{9}}{{S}_{6}}$=( 。
A.$\frac{2}{3}$B.$\frac{5}{3}$C.2D.$\frac{51}{22}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1,F(xiàn)2,且P,Q是橢圓C上不同的兩點,
(I)若直線PQ過橢圓C的右焦點F2,且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,在其定義域內(nèi)是偶函數(shù)的是( 。
A.f(x)=x2+1B.f(x)=2x+1C.f(x)=x2+xD.f(x)=x3+x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.△ABC中,角A,B,C所對的邊分別為a,b,c,若B=60°,b=1,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,已知AB=3+t(t>0),BC=4,∠B=60°,且邊長AC不大于4,則t的取值范圍為[-3,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若等式x4+4x3+3x2+2x+1=(x+1)4+a(x+1)3+b(x+1)2+c(x+1)+d恒成立,則(a,b,c,d)等于(  )
A.(1,2,3,-1)B.(2,3,4,-1)C.(0,-1,2,-2)D.(0,-3,4,-1)

查看答案和解析>>

同步練習冊答案