9.設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1,F(xiàn)2,且P,Q是橢圓C上不同的兩點(diǎn),
(I)若直線PQ過橢圓C的右焦點(diǎn)F2,且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

分析 (I)求得橢圓的a,b,c,設(shè)出直線PQ的方程,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式可得|PQ|,再由橢圓的定義可得|F1P|+|PQ|+|QF1|=4a,由等差數(shù)列的中項的性質(zhì),可得結(jié)論;
(Ⅱ)設(shè)出直線PQ的方程,代入橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,由等比數(shù)列的中項的性質(zhì),結(jié)合直線的斜率公式,化簡整理,解方程即可得到直線PQ的斜率.

解答 解:(I)證明:x2+3y2=6即為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,
即有a=$\sqrt{6}$,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}-^{2}}$=2,
由直線PQ過橢圓C的右焦點(diǎn)F2(2,0),且傾斜角為30°,
可得直線PQ的方程為y=$\frac{\sqrt{3}}{3}$(x-2),
代入橢圓方程可得,x2-2x-1=0,
即有x1+x2=2,x1x2=-1,
由弦長公式可得|PQ|=$\sqrt{1+\frac{1}{3}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\frac{2\sqrt{3}}{3}$•$\sqrt{4+4}$=$\frac{4\sqrt{6}}{3}$,
由橢圓的定義可得|F1P|+|PQ|+|QF1|=4a=4$\sqrt{6}$,
可得|F1P|+|QF1|=4$\sqrt{6}$-$\frac{4\sqrt{6}}{3}$=$\frac{8\sqrt{6}}{3}$=2|PQ|,
則有|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)設(shè)直線PQ的方程為y=kx+m,代入橢圓方程x2+3y2=6,
消去y得:(1+3k2)x2+6kmx+3(m2-2)=0,
則△=36k2m2-12(1+3k2)(m2-2)
=12(6k2-m2+2)>0,
x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3({m}^{2}-2)}{1+3{k}^{2}}$,
故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,
∵直線OP、PQ、OQ的斜率依次成等比數(shù)列,
∴$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{2}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$=k2,
即km(x1+x2)+m2=0,即有-$\frac{6{k}^{2}{m}^{2}}{1+3{k}^{2}}$+m2=0,
由于m≠0,故k2=$\frac{1}{3}$,
∴直線PQ的斜率k為±$\frac{\sqrt{3}}{3}$.

點(diǎn)評 本題考查等差和等比數(shù)列的中項的性質(zhì),考查直線的斜率的求法,注意運(yùn)用直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長公式,以及橢圓的定義,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$tanx=\frac{1}{3}$,則sinxcosx+1等于( 。
A.$\frac{13}{10}$B.$-\frac{13}{10}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的通項公式為an=|n-13|,那么滿足a1+a2+…+ak=114的整數(shù)k的值是( 。
A.20B.21C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)g(x)=$\frac{1}{4|x|}$的圖象向左平移1個單位,所得函數(shù)h(x)的圖象與f(x)=x2(x+2)2的圖象有六個不同的交點(diǎn),則這六個交點(diǎn)的橫坐標(biāo)之和等于( 。
A.-8B.-4C.-6D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,D是BC的中點(diǎn),E是AD的中點(diǎn),若$\overrightarrow{CE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$,則λ12=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.實(shí)數(shù)集{0,1,x2-x}中,x不能取得的值為:0,1,$\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(6,m),且$\overrightarrow{a}$$∥\overrightarrow$,求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知θ為第三象限角,且終邊上一點(diǎn)P(-2,x),且sinθ=$\frac{\sqrt{2}}{4}$x,則tanθ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在三角形ABC中,∠A=45°,∠B=90°,sinC=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案