分析 (Ⅰ)由正弦定理得:$\sqrt{3}$sinAcosC-sinCsinA=0,即可解得tanC=$\sqrt{3}$,從而求得C的值;
(Ⅱ)由面積公式可得S△ABC=$\frac{1}{2}$absinC=3$\sqrt{3}$,從而求得得b的值,由余弦定理即可求c的值.
解答 解:(Ⅰ)在△ABC中,由正弦定理得:$\sqrt{3}$sinAcosC-sinCsinA=0. …(2分)
因?yàn)?<A<π,所以sinA>0,
從而$\sqrt{3}$cosC=sinC,又cosC≠0,…(4分)
所以tanC=$\sqrt{3}$,所以C=$\frac{π}{3}$.…(6分)
(Ⅱ)在△ABC中,S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{13}×b×sin\frac{π}{3}$=3$\sqrt{3}$,得b=$\frac{12\sqrt{13}}{13}$,…(9分)
由余弦定理得:c2=$\sqrt{13}$2+($\frac{12\sqrt{13}}{13}$)2-2×$\sqrt{13}$×$\frac{12\sqrt{13}}{13}$×cos$\frac{π}{3}$=$\frac{157}{13}$,
所以c=$\frac{\sqrt{2041}}{13}$.…(12分)
點(diǎn)評 本小題主要考查正弦定理、余弦定理、三角形的面積公式、同角三角函數(shù)的基本關(guān)系式等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24種 | B. | 42種 | C. | 36種 | D. | 48種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,$\frac{5}{4}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{7}{5}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com