12.(Ⅰ)給定線段AB=4,用斜二測畫法作正方體ABCD-A1B1C1D1;
(Ⅱ)設(shè)P是棱A1B1上一點(diǎn),$P{B_1}=\frac{1}{4}{A_1}{B_1}$,求多面體P-BCC1B1的體積.

分析 (Ⅰ)利用斜二測畫法,可作正方體ABCD-A1B1C1D1;
(Ⅱ)利用錐體的體積公式,求多面體P-BCC1B1的體積.

解答 解:(Ⅰ)①建立坐標(biāo)系,作底面ABCD,AB=4,AD=2;
②作AA1=4,并作出底面A1B1C1D1
③成圖.
(Ⅱ)${V_{P-BC{C_1}{B_1}}}=\frac{1}{3}×4×4×1=\frac{16}{3}$.

點(diǎn)評 本題考查斜二測畫法,考查錐體的體積公式,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1作傾斜角為$\frac{π}{3}$的直線交橢圓于A、B兩點(diǎn),求:
(1)弦AB的長
(2)△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)y=f(x)的圖象如圖,則滿足$f({\frac{{2{x^2}-x-1}}{{{x^2}-2x+1}}^{\;}})•f(2)≤0$的x的取值范圍[-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x≤0\\ lnx,x>0\end{array}\right.$,若函數(shù)y=|f(x)|-m的零點(diǎn)個(gè)數(shù)是4個(gè),則實(shí)數(shù)m的取值范圍是(  )
A.(0,2)B.(0,2]C.[0,2]D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x+\frac{π}{2})$為偶函數(shù),當(dāng)$x∈(-\frac{π}{2},\frac{π}{2})$時(shí),f(x)=x3+sinx,若a=f(1),b=f(2),c=f(3),則有( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x、y>0,且$\frac{1}{x}+\frac{2}{y}=1$,則x+2y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“若x2<1,則-1≤x<1”的逆否命題是( 。
A.若x2≥1,則x<-1或x≥1B.若-1≤x<1,則x2<1
C.若x≤-1或x>1,則x2>1D.若x<-1或x≥1,則x2≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$.
(1)證明:函數(shù)F(x)=[f(x)]2-[g(x)]2是常數(shù)函數(shù);
(2)判斷G(x)=$\frac{g(x)}{f(x)}$的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知關(guān)于x的方程log2(x+24)-log4x2=a在區(qū)間(3,8)內(nèi)有解,則a的取值范圍是a∈(2,log29).

查看答案和解析>>

同步練習(xí)冊答案