8.(1)已知f($\frac{2}{x}$+1)=1gx,求f(x)的解析式;
(2)已知f(x)為一次函數(shù),且f[f(x)]=4x+3,求f(x)的解析式.

分析 (1)令$\frac{2}{x}$+1=t則x=$\frac{2}{t-1}$,換元可得;
(2)設(shè)一次函數(shù)f(x)=ax+b,待定系數(shù)可得.

解答 解:(1)令$\frac{2}{x}$+1=t則x=$\frac{2}{t-1}$,
∴f(t)=1g$\frac{2}{t-1}$,
故f(x)的解析式為f(x)=1g$\frac{2}{x-1}$,(x>1);
(2)設(shè)一次函數(shù)f(x)=ax+b,
由f[f(x)]=4x+3可得a(ax+b)+b=4x+3,
∴a2=4且ab+b=3,解得$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=-3}\end{array}\right.$,
∴f(x)的解析式為f(x)=2x+1或f(x)=-2x-3

點(diǎn)評(píng) 本題考查函數(shù)解析式求解的換元法和待定系數(shù)法,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在直角坐標(biāo)平面內(nèi),滿足方程$({y^2}+2|x|)(\frac{x^2}{16}-\frac{y^2}{9})=0$的點(diǎn)(x,y)所構(gòu)成的圖形為( 。
A.拋物線及原點(diǎn)B.雙曲線及原點(diǎn)
C.拋物線、雙曲線及原點(diǎn)D.兩條相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,已知拋物線y2=4x上一點(diǎn)P到點(diǎn)A(3,0)的距離等于它到準(zhǔn)線的距離,則PA=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=4x,F(xiàn)為拋物線焦點(diǎn),A、B為拋物線上的兩點(diǎn),且∠AFB=60°,M為AB中點(diǎn),過M作拋物線準(zhǔn)線的垂線交準(zhǔn)線于點(diǎn)N.求$\frac{|MN|}{|AB|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=|log4x|,若f(x)在[a,b]的值域是[0,1],則b-a的最小值是$\frac{3}{4}$,最大值是$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在空間直角坐標(biāo)系中有單位正方體ABCD-A1B1C1D1
(1)求直線DD1與平面AB1C所成角的正弦值;
(2)求平面AB1C與平面AB1D1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線x+2y=5與直線x+2y=10間的距離是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)F1、F2分別是雙曲線x2-$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且向量$\overrightarrow{P{F}_{1}}$與$\overrightarrow{P{F}_{2}}$的夾角為60°,則S${\;}_{△{F}_{1}P{F}_{2}}$=(  )
A.9$\sqrt{3}$B.6$\sqrt{3}$C.4$\sqrt{3}$D.10$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a>0,b>0,點(diǎn)(1,2)在直線$\frac{x}{a}$+$\frac{y}$=1上,則a十2b取最小值時(shí),$\frac{a}$=(  )
A.2B.1C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案