分析 根據(jù)一元二次函數(shù)的性質(zhì),利用待定系數(shù)法進(jìn)行求解即可.
解答 解:∵二次函數(shù)的圖象與x軸的交點(diǎn)為(0,0)和(-2,0),且f(x)的最小值是-1,
∴拋物線開(kāi)口向上,且對(duì)稱(chēng)軸為x=-1,則頂點(diǎn)坐標(biāo)為(-1,-1),
設(shè)f(x)=a(x+1)2-1,
∵f(0)=0,
∴a-1=0,則a=1,
即f(x)=(x+1)2-1=x2+2x,
若g(x)與f(x)的圖象關(guān)于y軸對(duì)稱(chēng),
即g(x)=f(-x)=x2-2x.
點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,利用待定系數(shù)法結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{59}{117}$ | D. | $\frac{11}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | -$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com