19.若△ABC中,AC=$\sqrt{6}$,A=45°,C=75°,則BC=2.

分析 由已知可求B的值,利用正弦定理即可求BC的值.

解答 解:∵AC=$\sqrt{6}$,A=45°,C=75°,
∴B=π-A-C=60°,
∴由正弦定理可得:BC=$\frac{ACsinA}{sinB}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理,正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果f(x)在[-5,5]上是奇函數(shù),且f(3)<f(1),則(  )
A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)隨機(jī)抽取50名高一學(xué)生調(diào)查其每天運(yùn)動(dòng)的時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,運(yùn)動(dòng)
的時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)定義運(yùn)動(dòng)的時(shí)間不少于1小時(shí)的學(xué)生稱為“熱愛運(yùn)動(dòng)”,若該校有高一學(xué)生1200人,請(qǐng)估計(jì)有多少學(xué)生“熱愛運(yùn)動(dòng)”;
(3)設(shè)m,n表示在抽取的50人中某兩位同學(xué)每大運(yùn)動(dòng)的時(shí)間,且已知m,n∈[40,60)∪[80,100],求事件“|m-n|>20”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列關(guān)于函數(shù)f(x)=sinx(cosx+sinx)的說法中,不正確的是( 。
A.f(x)的最小正周期為π
B.f(x)的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱
C.f(x)的圖象關(guān)于點(diǎn)($\frac{π}{8}$,0)對(duì)稱
D.f(x)的圖象向右平移$\frac{π}{8}$后得到一個(gè)偶函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=$\sqrt{x(2-x)}$的定義域?yàn)閇0,2],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域?yàn)閇0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.編寫一個(gè)程序,求1~1000之間的所有3的倍數(shù)之和和所有7的倍數(shù)之和及所有3或7的倍數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1,設(shè)集合A={-1,1,2,3,4,5},B={-2,-1,1,2,3,4},分別從集合A和B中隨機(jī)取一個(gè)數(shù)記為a和b,則函數(shù)y=f(x)在[1,+∞)上單調(diào)遞增的概率為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=2sinx(cosx+$\sqrt{3}$sinx).
(1)求f(x)的單調(diào)遞增區(qū)間和最小正周期;
(2)在△ABC中,C=$\frac{π}{3}$且c=$\sqrt{3}$,若x=B時(shí),f(x)取得最大值,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2+a(b+1)x+a+b(a,b∈R),則“a=0”是“f(x)為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案