9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$若函數(shù)g(x)=f[f(x)]-2的零點個數(shù)為( 。
A.3B.4C.5D.6

分析 函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$,通過對x分類討論可得f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|∈[0,2],}&{x∈(-∞,lo{g}_{2}3)}\\{{2}^{x}-1∈(2,3),}&{x∈[lo{g}_{2}3,2)}\\{\frac{3}{x-1}∈(2,3],}&{2≤x<\frac{5}{2}}\\{\frac{3}{x-1}∈(0,2],}&{x≥\frac{5}{2}}\end{array}\right.$.進(jìn)而解出即可.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$,
∴f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|∈[0,2],}&{x∈(-∞,lo{g}_{2}3)}\\{{2}^{x}-1∈(2,3),}&{x∈[lo{g}_{2}3,2)}\\{\frac{3}{x-1}∈(2,3],}&{2≤x<\frac{5}{2}}\\{\frac{3}{x-1}∈(0,2],}&{x≥\frac{5}{2}}\end{array}\right.$.
∴x∈(-∞,log23)時,f(f(x))=$|{2}^{|{2}^{x}-1|}-1|$∈[0,3],令f(f(x))=2,解得x=log2(1+log23).
同理可得:x∈[log23,2)時,$\frac{3}{{2}^{x}-1-1}$=2,解得x=$lo{g}_{2}\frac{7}{2}$.
x∈$[2,\frac{5}{2})$時,$\frac{3}{\frac{3}{x-1}-1}$=2,解得x=$\frac{11}{5}$.
$x≥\frac{5}{2}$時,$|{2}^{\frac{3}{x-1}}-1|$=2,解得x=1+$\frac{3}{lo{g}_{2}3}$.
綜上可得:函數(shù)g(x)=f[f(x)]-2的x零點個數(shù)為4.
故選:B.

點評 本題考查了函數(shù)的性質(zhì)、不等式的解法、簡易邏輯的判定方法,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+4x+4,若存在實數(shù)t,當(dāng)x∈[1,t]時,f(x+a)≤4x恒成立,則實數(shù)t的最大值為( 。
A.4B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差敦列(an}中,a2=3,a7=13,數(shù)列{bn}的前n項和為Sn,且Sn=$\frac{4}{3}$(4n-1).
(1)求an及bn
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知角β的頂點為坐標(biāo)原點O,始邊在x軸的正半軸上,終邊經(jīng)過點P(-4,3)
(1)求sinβ與sin2β的值
(2)已知函數(shù)f(x)=3cos(x-$\frac{π}{4}$),求函數(shù)f(x)的最大值和最小正周期,并求f(β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l1、l2與曲線W:mx2+ny2=1(m>0,n>0)分別相交于點A、B和C、D,我們將四邊形ABCD稱為曲線W的內(nèi)接四邊形.
(1)若直線l1:y=x+a和l2:y=x+b將單位圓W:x2+y2=1分成長度相等的四段弧,求a2+b2的值;
(2)若直線${l_1}:y=2x-\sqrt{10},{l_2}:y=2x+\sqrt{10}$與圓W:x2+y2=4分別交于點A、B和C、D,求證:四邊形ABCD為正方形;
(3)求證:橢圓$W:\frac{x^2}{2}+{y^2}=1$的內(nèi)接正方形有且只有一個,并求該內(nèi)接正方形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=$\sqrt{3}$,AD=DE=2.
(Ⅰ)在線段CE上取一點F,作BF∥平面ACD(只需指出F的位置,不需證明);
(Ⅱ)對(Ⅰ)中的點F,求直線BF與平面ADEB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知某空間幾何體的三視圖如圖所示,則該幾何體的體積是48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,則tanα=( 。
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知兩點A(0,2)、B=(3,-1),向量$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow$=(1,m),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案