12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的斜率為k,k是mn的最小值,其中m,n滿足$\frac{1}{m}+\frac{1}{n}=\sqrt{mn}$,且右焦點(diǎn)與拋物線y2=4$\sqrt{5}$x的焦點(diǎn)重合,則該雙曲線的離心率等于( 。
A.$\sqrt{2}$B.2$\sqrt{5}$C.2D.$\sqrt{5}$

分析 運(yùn)用基本不等式可得mn≥2,求出最小值,由漸近線方程可得b=2a,求出拋物線的焦點(diǎn),可得c,即a2+b2=5,解得a=1,由離心率公式計(jì)算即可得到所求值.

解答 解:由$\frac{1}{m}+\frac{1}{n}=\sqrt{mn}$,可得m,n>0,
由$\frac{1}{m}$+$\frac{1}{n}$≥2$\sqrt{\frac{1}{mn}}$,即有mn≥2,
當(dāng)且僅當(dāng)m=n=1時(shí),取得最小值2.
由雙曲線的漸近線方程可得y=±$\frac{a}$x,
可得$\frac{a}$=2,
由拋物線y2=4$\sqrt{5}$x的焦點(diǎn)為($\sqrt{5}$,0),
可得c=$\sqrt{5}$,即a2+b2=5,
解得a=1,b=2,
即有離心率e=$\frac{c}{a}$=$\sqrt{5}$.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用基本不等式和拋物線的焦點(diǎn)坐標(biāo),考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義“θ1⊕θ2”是將角θ1的終邊按照逆時(shí)針方向旋轉(zhuǎn)到與角θ2的終邊重合所轉(zhuǎn)動(dòng)的最小正角.則-$\frac{7π}{6}$⊕$\frac{4π}{3}$等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線C:$\frac{x^2}{9}-\frac{y^2}{4}$=1,點(diǎn)M與曲線C的焦點(diǎn)不重合,若點(diǎn)M關(guān)于曲線C的兩個(gè)焦點(diǎn)的對(duì)稱點(diǎn)分別為A,B,M,N是坐標(biāo)平面內(nèi)的兩點(diǎn),且線段MN的中點(diǎn)P恰好在雙曲線C上,則|AN-BN|=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F作一條直線,當(dāng)直線斜率為l時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為( 。
A.(1,$\sqrt{2}$)B.(1,$\sqrt{10}$)C.($\sqrt{2}$,$\sqrt{10}$)D.($\sqrt{5}$,$\sqrt{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個(gè)焦點(diǎn)恰為拋物線y2=8x的焦點(diǎn),且離心率為2,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{3}-{y^2}=1$D.$\frac{x^2}{12}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一點(diǎn)M為圓心的圓與x軸恰相切于雙曲線的一個(gè)焦點(diǎn)F,且與y軸交于P、Q兩點(diǎn).若△MPQ為正三角形,則該雙曲線的離心率為( 。
A.4B.$\sqrt{7}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線M:$\frac{x^2}{4}$-$\frac{y^2}{5}$=1與拋物線N:y2=2px(p>0)的一個(gè)交點(diǎn)為A(4,m).
(1)求拋物線N的標(biāo)準(zhǔn)方程;
(2)設(shè)雙曲線M在實(shí)軸上的頂點(diǎn)為C、D,求$\overrightarrow{AC}$•$\overrightarrow{AD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線與圓x2+(y-2)2=2至多有一個(gè)交點(diǎn),則雙曲線離心率的取值范圍是( 。
A.$[\sqrt{2},+∞)$B.[2,+∞)C.$({1,\sqrt{2}}]$D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算.
(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$; 
(2)${log_{2.5}}6.25+lg\frac{1}{100}+ln(e\sqrt{e})+{log_2}({log_2}16)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案