【題目】已知等差數(shù)列的前n項(xiàng)和為,且,,數(shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列,的通項(xiàng)公式.
(2)設(shè),數(shù)列的前n項(xiàng)和為,求.
(3)設(shè),求數(shù)列的前n項(xiàng)和.
【答案】(1);(2)(3)
【解析】
(1)由題意結(jié)合等差數(shù)列的前n項(xiàng)和公式、通項(xiàng)公式即可求得;由與間的關(guān)系可得;
(2)由題意,由裂項(xiàng)相消法即可得解;
(3)由題意將分為與的兩部分,分別利用錯(cuò)位相減法、裂項(xiàng)相消法求出其前n項(xiàng)和、,即可得解.
(1)數(shù)列為等差數(shù)列,為其前n項(xiàng)和,,
,∴,
∴;
對數(shù)列,當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí)也滿足上式,
∴;
(2)由題意
,
∴;
(3)由題意,
∵,∴,
而
設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為,
則①,
②,
①②得
,
∴,
當(dāng)n為偶數(shù)時(shí),
;
當(dāng)n為奇數(shù)時(shí),
;
由以上可知
所以數(shù)列的前n項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線()上的兩個(gè)動點(diǎn)和,焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機(jī)市場占有率的變化趨勢,則最早何時(shí)該款手機(jī)市場占有率能超過0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)為曲線上的動點(diǎn),求線段的中點(diǎn)到直線的距離的最大值.并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠來襲,湖北告急!有一支援鄂醫(yī)療小隊(duì)由3名醫(yī)生和6名護(hù)士組成,他們?nèi)恳峙涞饺裔t(yī)院.每家醫(yī)院分到醫(yī)生1名和護(hù)士1至3名,其中護(hù)士甲和護(hù)士乙必須分到同一家醫(yī)院,則不同的分配方法有( )種
A.252B.540C.792D.684
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是橢圓:的左、右焦點(diǎn),離心率為,,是平面內(nèi)兩點(diǎn),滿足,線段的中點(diǎn)在橢圓上,周長為12.
(1)求橢圓的方程;
(2)若過的直線與橢圓交于,,求(其中為坐標(biāo)原點(diǎn))的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的一臺某型號機(jī)器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機(jī)器處于故障狀態(tài),則停機(jī)檢修.為了檢查機(jī)器工作狀態(tài)是否正常,工廠隨機(jī)統(tǒng)計(jì)了該機(jī)器以往正常工作狀態(tài)下生產(chǎn)的1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,得出如圖1所示頻率分布直方圖.由統(tǒng)計(jì)結(jié)果可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的平均數(shù),近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值為代表).若產(chǎn)品的質(zhì)量指標(biāo)值全部在之內(nèi),就認(rèn)為機(jī)器處于正常狀態(tài),否則,認(rèn)為機(jī)器處于故障狀態(tài).
(1)下面是檢驗(yàn)員在一天內(nèi)從該機(jī)器生產(chǎn)的產(chǎn)品中隨機(jī)抽取10件測得的質(zhì)量指標(biāo)值:
29 45 55 63 67 73 78 87 93 113
請判斷該機(jī)器是否出現(xiàn)故障?
(2)若機(jī)器出現(xiàn)故障,有2種檢修方案可供選擇:
方案一:加急檢修,檢修公司會在當(dāng)天排除故障,費(fèi)用為700元;
方案二:常規(guī)檢修,檢修公司會在七天內(nèi)的任意一天來排除故障,費(fèi)用為200元.
現(xiàn)需決策在機(jī)器出現(xiàn)故障時(shí),該工廠選擇何種方案進(jìn)行檢修,為此搜集檢修公司對該型號機(jī)器近100單常規(guī)檢修在第i(,2,…,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機(jī)器正常工作一天可收益200元,故障機(jī)器檢修當(dāng)天不工作,若機(jī)器出現(xiàn)故障,該選擇哪種檢修方案?
附:,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com