3.命題p:?α∈R,cos(π+α)=cosα,命題q:?x∈R,x2+1>0,則下面結(jié)論正確的是(  )
A.p是假命題B.¬q是真命題C.p∨q是假命題D.p∨q是真命題

分析 分別判定命題p與q的真假,再利用復(fù)合命題之間的判定方法即可得出.

解答 解:∵命題p:?α∈R,cos(π+α)=cosα,是真命題,例如取α=$\frac{π}{2}$;
命題q:?x∈R,x2+1>0,是真命題.
因此:只有p∨q是真命題.
故選:D.

點評 本題考查了三角函數(shù)求值、函數(shù)的性質(zhì)、復(fù)合命題之間的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:對任意x∈R,都有x2+1>0,則命題p的否定為( 。
A.存在x0∈R,使得${x_0}^2+1>0$B.存在x0∈R,使得${x_0}^2+1≤0$
C.存在x0∈R,使得${x_0}^2+1<0$D.存在x0∈R,使得${x_0}^2+1≥0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\sqrt{{{log}_{0.2}}(2-x)}$的定義域是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,定圓C的半徑為4,A為圓C上的一個定點,B為圓C上的動點,若點A,B,C不共線,且$|{\overrightarrow{AB}-t\overrightarrow{AC}}|≥|{\overrightarrow{BC}}|$對任意的t∈(0,+∞)恒成立,則$\overrightarrow{AB}•\overrightarrow{AC}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知函數(shù)f(x)=x2-lnx-1,求f(x)的單調(diào)區(qū)間,且指出函數(shù)f(x)的零點個數(shù);
(2)若關(guān)于x的方程ax2-1=lnx有兩解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.通過市場調(diào)查知某商品每件的市場價y(單位:圓)與上市時間x(單位:天)的數(shù)據(jù)如下:
 上市時間x天 4 10 36
 市場價y元 90 51 90
根據(jù)上表數(shù)據(jù),當(dāng)a≠0時,下列函數(shù):①y=ax+k;②y=ax2+bx+c;③y=alogmx中能恰當(dāng)?shù)拿枋鲈撋唐返氖袌鰞ry與上市時間x的變化關(guān)系的是(只需寫出序號即可)②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知單位向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,則函數(shù)f(x)=(x$\overrightarrow{a}$+$\overrightarrow$)2 (x∈R)(  )
A.既不是奇函數(shù)也不是偶函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是偶函數(shù)D.是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.我校在高三某班參加夏令營的12名同學(xué)中,隨機(jī)抽取6名,統(tǒng)計他們在參加夏令營期間完成測試項目的個數(shù),并制成莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)
(1)若完成測試項目的個數(shù)大于樣本均值的同學(xué)為優(yōu)秀學(xué)員,根據(jù)莖葉圖推斷該班12名同學(xué)中優(yōu)秀學(xué)員的人數(shù);
(2)從這6名同學(xué)中任選2人,設(shè)這兩人完成測試項目的個數(shù)分別為x,y,求|x-y|≤2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若點A(-1,-1),B(1,3),C(x,5)三點共線,則使$\overrightarrow{AB}$=$λ\overrightarrow{BC}$成立的實數(shù)λ的值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案