8.在等差數(shù)列{an}中,a1=21,a7=15,則公差d=( 。
A.-2B.-1C.1D.2

分析 直接由已知結合等差數(shù)列的通項公式求解.

解答 解:在等差數(shù)列{an}中,由a1=21,a7=15,得
$d=\frac{{a}_{7}-{a}_{1}}{7-1}=\frac{15-21}{6}=-1$.
故選:B.

點評 本題考查等差數(shù)列的通項公式,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x|$\frac{2x-6}{x+1}$≤0},B={-2,-1,0,3,4},則A∩B=( 。
A.{0}B.{0,3}C.{-1,0,3}D.{0,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.正方體ABCD-A1B1C1D1的棱長為2,P是面對角線BC1上一動點,Q是底面ABCD上一動點,則D1P+PQ的最小值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在邊長為2的菱形ABCD中,∠BAD=60°,點E為線段CD上的任意一點,則$\overrightarrow{AE}•\overrightarrow{BD}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)滿足:存在非零常數(shù)a,使f(x)=-f(2a-x),則稱f(x)為“準奇函數(shù)”,給出下列函數(shù):①f(x)=x2;②f(x)=(x-1)3;③f(x)=ex-1;④f(x)=cosx.則以上函數(shù)中是“準奇函數(shù)”的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則A=$\sqrt{2}$,ω=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.要得到函數(shù)$y=cos(4x-\frac{π}{3})$圖象,只需將函數(shù)$y=sin(\frac{π}{2}+4x)$圖象( 。
A.向左平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{12}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知命題p:某班所有的男生都愛踢足球,則命題?p為( 。
A.某班至多有一個男生愛踢足球B.某班至少有一個男生不愛踢足球
C.某班所有的男生都不愛踢足球D.某班所有的女生都愛踢足球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.命題p:?x∈(-∞,0),2x>3x,則( 。
A.p是假命題,¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
B.p是假命題¬p:?x∈(-∞,0),2x>3x
C.p是真命題¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
D.p是真命題¬p:?x∈(-∞,0),2x>3x

查看答案和解析>>

同步練習冊答案