10.過雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的左頂點A作斜率為1的直線l,若l與雙曲線的兩條漸近線分別相交于B,C,且2$\overrightarrow{AB}$=$\overrightarrow{BC}$,則此雙曲線的離心率是( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

分析 先由雙曲線線方程可得A的坐標和直線l的方程,與雙曲線的漸近線聯(lián)立求得B和C的橫坐標,進而根據(jù)2$\overrightarrow{AB}$=$\overrightarrow{BC}$,求得b的值,進而根據(jù)c=$\sqrt{{a}^{2}+^{2}}$,求得c,最后根據(jù)離心率公式答案可得.

解答 解:由題可知A(1,0),
所以直線l的方程為y=x-1.
兩條漸近線方程為y=±bx,
聯(lián)立y=x-1和y=bx,得C的橫坐標為xC=$\frac{1}{1-b}$,
同理得B的橫坐標為xB=$\frac{1}{1+b}$.
∵2$\overrightarrow{AB}$=$\overrightarrow{BC}$,
∴2($\frac{1}{1+b}$-1)=$\frac{1}{1-b}$-$\frac{1}{1+b}$,
得b=2或-1(舍去-1).
∴c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{1+4}$=$\sqrt{5}$,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故選:C.

點評 本題考題雙曲線性質(zhì)的綜合運用,主要是離心率,解題過程中要注意聯(lián)立方程求交點,向量的坐標表示的運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知點F(1,0),直線l:x=-1,直線l'垂直 l于點P,線段PF的垂直平分線交l’于點Q.
(Ⅰ)求點Q的軌跡 C的方程;
(Ⅱ)已知點 H(1,2),過F且與x軸不垂直的直線交C于A,B兩點,直線AH,BH分別交l于點M,N,求證:以MN為直徑的圓必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知a2-c2=2b,且sinA•cosC=3cosA•sinC,則b的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若對于任意的x∈[a,2a],都有y∈[a,a2]滿足logax+logay=3,則實數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.復數(shù)z=$\frac{2-i}{i}$(i為虛數(shù)單位)的共軛復數(shù)是(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{2}$$+\frac{{y}^{2}}{n}$=1(0<n<2).
(Ⅰ)若橢圓C的離心率為$\frac{1}{2}$,求n的值;
(Ⅱ)若過點N(-2,0)任作一條直線l與橢圓C交于不同的兩點A,B,在x軸上是否存在點M,使得∠NMA+∠NMB=180°?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一元二次不等式x2-3x+ab<0(a>b)的解集為{x|1<x<c},則$\frac{{a}^{2}+^{2}}{a-b}$的最小值為( 。
A.$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)對任意實數(shù)x∈R,f(x+2)=f(x)恒成立,且當x∈[-1,1]時,f(x)=2x+a,若點P(2017,8)是該函數(shù)圖象上一點,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位長度,所得圖象對應(yīng)的函數(shù)(  )
A.在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上單調(diào)遞減B.在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上單調(diào)遞增
C.在區(qū)間(-$\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞減D.在區(qū)間(-$\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞增

查看答案和解析>>

同步練習冊答案