分析 (1)通過VC-BDE=VE-BCD,直接求解幾何體的體積即可.
(2)以點(diǎn)A為原點(diǎn),AB、AD、AA1所在直線分別為x軸、y軸和z軸,建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),利用斜率垂直數(shù)量積為0,證明A1C⊥BE,A1C⊥BD,即可證明A1C⊥平面BDE,然后求解直線CC1與平面BDE所成角的正弦值.
解答 解:(1)由$CE=\frac{1}{4}C{C_1}$=$\frac{1}{2}$,
∴VC-BDE=VE-BCD…(2分)
=$\frac{1}{3}{S_{△BCD}}•CE=\frac{1}{3}×\frac{1}{2}×1×1×\frac{1}{2}=\frac{1}{12}$.…(6分)
(2)以點(diǎn)A為原點(diǎn),AB、AD、AA1所在直線分別為x軸、y軸和z軸,建立空間直角坐標(biāo)系,則$B({1,0,0})、D({0,1,0})、E({1,1,\frac{1}{2}})、{A_1}({0,0,2})、C({1,1,0})$,
∴$\overrightarrow{{A_1}C}=({1,1,-2})$,$\overrightarrow{BD}=({-1,1,0}),\overrightarrow{BE}=({0,1,\frac{1}{2}})$. …(8分)
∵$\overrightarrow{{A_1}C}•\overrightarrow{BD}=({1,1,-2})•({-1,1,0})=1×({-1})+1×1+({-2})×0=0$,$\overrightarrow{{A_1}C}•\overrightarrow{BE}=({1,1,-2})•({0,1,\frac{1}{2}})=1×0+1×1+({-2})×\frac{1}{2}=0$,…(10分)
∴$\overrightarrow{{A_1}C}⊥\overrightarrow{BD},\overrightarrow{{A_1}C}⊥\overrightarrow{BE}$.
∴A1C⊥BE,A1C⊥BD.
∵BE∩BD=B,BE?平面BDE,ED?平面BDE,
∴A1C⊥平面BDE. …(12分)
直線CC1與平面BDE所成角的余弦值:cosθ=|$\frac{\overrightarrow{{A}_{1}C}•\overrightarrow{{CC}_{1}}}{\overrightarrow{|{A}_{1}C}|•|\overrightarrow{{CC}_{1}}|}$|=$\frac{4}{2×\sqrt{1+1+4}}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.
直線CC1與平面BDE所成角的正弦值:$\frac{\sqrt{3}}{3}$.…(14分)
點(diǎn)評 本題考查直線與平面所成角的求法,直線與平面垂直的判斷,幾何體的求解的求法,考查空間想象能力以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (a,d)∪(b,c) | B. | (c,a]∪[b,d) | C. | (a,c]∪[d,b) | D. | (c,a)∪(d,b) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | -p | D. | (-p)∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | [0,2]∪{3} | C. | [0,+∞) | D. | [-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$ | B. | $\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$ | C. | $\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$ | D. | $\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com