11.若實(shí)數(shù)x滿足log2x=2+cosθ,則|x+1|+|x-9|的值等于( 。
A.2x-8B.8-2xC.10D.-10

分析 實(shí)數(shù)x滿足log2x=2+cosθ,可得x=22+cosθ,于是x∈[2,8],即可得出.

解答 解:∵實(shí)數(shù)x滿足log2x=2+cosθ,
∴x=22+cosθ=4×2cosθ≤8,
又x≥4×2-1=2,
則|x+1|+|x-9|=x+1+9-x=10,
故選:C.

點(diǎn)評 本題考查了指數(shù)與對數(shù)的運(yùn)算法則、絕對值的運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,則a1+a2+…+a9=( 。
A.1B.1024C.-1024D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.以下四個命題中,其中真命題的個數(shù)為( 。
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②對于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均有x2+x+1≥0;
③“x<0”是“l(fā)n(x+1)<0”的充分不必要條件;
④命題p:“x>3”是“x>5”的充分不必要條件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過實(shí)數(shù)x的最大整數(shù)),則運(yùn)行后輸出的結(jié)果是( 。
A.31B.33C.35D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某廠采用新技術(shù)改造后生產(chǎn)甲產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)成本y(萬元)的幾組對照數(shù)據(jù).
x3456
y33.54.55
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)已知該廠技改前生產(chǎn)50噸甲產(chǎn)品的生產(chǎn)成本為40萬元.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)50噸甲產(chǎn)品的生產(chǎn)成本比技改前降低多少萬元?
(參考數(shù)據(jù):$\sum_{i=1}^4{x_i^2=86}$$\sum_{i=1}^4{y_i^2=66}$.5$\sum_{i=1}^4{{x_i}{y_i}=75}$.5,$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$g(x)=\frac{x}{{{x^2}+ax+b}}$是奇函數(shù),且滿足g(1)=g(4).
(1)求實(shí)數(shù)a,b的值;
(2)若$f(x)=\frac{1}{g(x)}(x≠0)$,當(dāng)x∈[2,+∞)時,函數(shù)f(x)的圖象上是否存在不同的兩點(diǎn),使過這兩點(diǎn)的直線平行于x軸;
(3)對于(2)中的f(x),是否存在實(shí)數(shù)k同時滿足以下兩個條件:①不等式$f(x)+\frac{k}{2}>0$對x∈[0,+∞)恒成立,②方程f(x)=k在x∈[-8,-1)上有解.若存在,求出實(shí)數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228=$-\frac{3}{2}$;0.0081${\;}^{\frac{1}{4}}$-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+$\sqrt{3}$•$\root{3}{\frac{3}{2}}$•$\root{6}{12}$=$\frac{257}{90}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某一簡單幾何體的三視圖如所示,該幾何體的外接球的表面積是( 。
A.13πB.16πC.25πD.27π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖為某幾何體的三視圖,該幾何體的體積記為V1,將俯視圖繞其直徑所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積記為V2,則$\frac{{V}_{1}}{{V}_{2}}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案