x | 3 | 4 | 5 | 6 |
y | 3 | 3.5 | 4.5 | 5 |
分析 (1)把所給的四對(duì)數(shù)據(jù)寫成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來,得到散點(diǎn)圖.
(2)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個(gè)數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點(diǎn)代入,求出a的值,得到線性回歸方程.
(3)根據(jù)上一問所求的線性回歸方程,把x=50代入線性回歸方程,即可預(yù)測(cè)生產(chǎn)50噸甲產(chǎn)品的生產(chǎn)成本比技改前降低多少.
解答 解:(1)把所給的四對(duì)數(shù)據(jù)寫成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來,得到散點(diǎn)圖 …(2分)
(2)由已知$\sum_{i=1}^4{x_i^2=86}$,$\sum_{i=1}^4{y_i^2=66}.5$,$\sum_{i=1}^4{{x_i}{y_i}=75}.5$,$\overline x=4.5$,$\overline y=4$,
所以,由最小二乘法確定的回歸方程的系數(shù)為:
$\widehat$=$\frac{75.5-4×4×4.5}{{86-4×{{4.5}^2}}}=0.7$…(5分)
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=4-0.7×4.5=0.85 …(7分)
因此,所求的線性回歸方程為$\widehat{y}$=0.7x+0.85 …(8分)
(3)由(2)的回歸方程及技改前生產(chǎn)50噸甲產(chǎn)品的生產(chǎn)成本,得降低的生產(chǎn)成本為:
40-(0.7×50+0.85)=4.15(萬元). …(12分)
點(diǎn)評(píng) 本題考查線性回歸方程,兩個(gè)變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測(cè)值,獲得對(duì)這兩個(gè)變量之間整體關(guān)系的了解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5,2 | B. | 16,2 | C. | 16,18 | D. | 16,9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4] | B. | [0,4] | C. | (-∞,0)∪[4,+∞) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-8 | B. | 8-2x | C. | 10 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(-\frac{5}{6}x+\frac{3π}{5})$ | B. | $y=sin(\frac{6}{5}x-\frac{2π}{5})$ | C. | $y=sin(\frac{6}{5}x+\frac{3π}{5})$ | D. | $y=-cos(\frac{5}{6}x+\frac{3π}{5})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com