9.若z=cosθ+isinθ(i為虛數(shù)單位),則$θ=\frac{π}{2}+2kπ({k∈Z})$是z2=-1的充分不必要條件.

分析 當$θ=\frac{π}{2}+2kπ({k∈Z})$時,可得z2=-1,反之不成立.即可判斷出.

解答 解:當$θ=\frac{π}{2}+2kπ({k∈Z})$時,z=cosθ+isinθ=i,
則z2=-1,
反之不成立.
例如θ=$\frac{3π}{2}+2kπ$(k∈Z)時,z2=-1.
∴$θ=\frac{π}{2}+2kπ({k∈Z})$是z2=-1的充分不必要條件.
故答案為:充分不必要.

點評 本題考查了三角函數(shù)求值、復數(shù)的運算法則、充要條件的判定,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列四個命題:
①當x>0時,f(x)是增函數(shù);
②f(x)的圖象關(guān)于(0,c)對稱;
③當b≠0時,方程f(x)=0必有三個實數(shù)根;
④當b=0時,方程f(x)=0有且只有一個實根.
其中正確的命題是②④(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(x)是二次函數(shù),若f(0)=0,且函數(shù)f(x+1)=f(x)+x+1.
(1)求f(x)的解析式;
(2)求f(x)在x∈[-1,2]時的值域
(3)令g(x)=f(x)-$\frac{1}{x}$,判斷函數(shù)g(x)是否存在零點,若存在零點求出所有零點,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若a和b均為非零實數(shù),則下列不等式中恒成立的是 ( 。
A.$\frac{{{a^2}+{b^2}}}{2}≥{(\frac{a+b}{2})^2}$B.$\frac{a}+\frac{a}≥2$C.$(a+b)(\frac{1}{a}+\frac{1})≥4$D.$\frac{|a+b|}{2}≥\sqrt{\;|ab|}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.請在圖中用陰影部分表示下面一個集合:((A∩B)∪(A∩C)∩(∁uB∪∁uC)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.三棱柱ABC-A1B1C1的底是邊長為1的正三角形,高AA1=1,在AB上取一點P,設(shè)△PA1C1與面A1B1C1所成的二面角為α,△PB1C1與面A1B1C1所成的二面角為β,則tan(α+β)的最小值是-$\frac{8\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知曲線f(x)=$\frac{1}{3}$ax3-4lnx在點(1,f(1))處的切線l與x軸的交點為($\frac{4}{3}$,0).
(1)求f(x)的極小值;
(2)求證:對任意x∈(0,+∞),$\frac{{x}^{4}}{6}+\frac{2}{e}$>$\frac{xf(x)}{4}+\frac{x}{{e}^{x}}$(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與x軸交于點A,以O(shè)A為邊作等腰三角形OAP,其頂點P在橢圓上,且∠OPA=120°.則橢圓的離心率e=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步練習冊答案