將直線l1:x+y-3=0繞著點(diǎn)P(1,2)按逆時(shí)針方向旋轉(zhuǎn)45°后得到直線l2,則l2的方程為
 
考點(diǎn):兩直線的夾角與到角問題
專題:計(jì)算題,直線與圓
分析:設(shè)直線l1:x+y-3=0的斜率為k1,直線l2的斜率為k2,利用“到角”公式tan45°=
k2-k1
1+k2k1
可求得k2,再由點(diǎn)斜式即可求得l2的方程.
解答: 解:設(shè)直線l1:x+y-3=0的斜率為k1
則k1=-1;
設(shè)直線l2的斜率為k2
依題意,tan45°=
k2-k1
1+k2k1
=
k2-(-1)
1+k2•(-1)
=1,
解得k2=0,
由直線l2經(jīng)過點(diǎn)P(1,2),
∴l(xiāng)2的方程為y-2=0×(x-1),
整理得:y=2.
故答案為:y=2.
點(diǎn)評:本題考查兩直線的到角公式的應(yīng)用,求得l2的斜率為k2是關(guān)鍵,考查運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由恒等式:
1+2
1+3
1+4
1+5
1+…
=3
.可得
1+3
1+4
1+5
1+6
1+…
=
 
;進(jìn)而還可以算出
1+4
1+5
1+6
1+7
1+…
、
1+5
1+6
1+7
1+8
1+…
的值,并可歸納猜想得到
1+n
1+(n+1)
1+(n+2)
1+(n+3)
1+…
=
 
.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AC=16cm,先截取AB=4cm作為長方體的高,再將線段BC任意分成兩段作為長方體的長和寬,則長方體的體積超過128cm3的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)圓柱的側(cè)面展開圖是一個(gè)正方形,這個(gè)圓柱的表面積與側(cè)面積的比是(  )
A、
1+2π
B、
1+2π
C、
1+2π
π
D、
1+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,1),B(2,2),C(4,0),D(
12
5
16
5
),點(diǎn)P在線段CD垂直平分線上,求:
(1)線段CD垂直平分線方程;
(2)|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某一容器的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+ax)6的展開式中,含x3項(xiàng)的系數(shù)等于160,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2-4x+3=0,圓C2:x2+y2-8y+15=0,動點(diǎn)P到圓C1,C2上點(diǎn)的距離的最小值相等.
(1)求點(diǎn)P的軌跡方程;
(2)直線l:mx-(m2+1)y=4m,m∈R,是否存在m值使直線l被圓C1所截得的弦長為
6
3
,若存在,求出m值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+2x在閉區(qū)間[a,b]上的值域?yàn)閇-1,3],則滿足題意的有序?qū)崝?shù)對(a,b)在坐標(biāo)平面內(nèi)所對應(yīng)點(diǎn)組成圖形的長度為(  )
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊答案