分析 利用同角三角函數的基本關系和α,β的范圍求得sinα和sinβ的值,進而利用余弦的兩角和公式求得cos(α+β)的值,進而根據α,β的范圍求得(α+β)的值.
解答 解:∵α、β∈(0,π),且cosα=$\frac{{\sqrt{10}}}{10}$,cosβ=$\frac{{\sqrt{5}}}{5}$,
∴sinα=$\frac{3\sqrt{10}}{10}$,sinβ=$\frac{2\sqrt{5}}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{{\sqrt{10}}}{10}$×$\frac{{\sqrt{5}}}{5}$-$\frac{3\sqrt{10}}{10}$×$\frac{2\sqrt{5}}{5}$=-$\frac{\sqrt{2}}{2}$,
又∵α、β∈(0,π),
∴α+β=$\frac{3π}{4}$.
故答案是:$\frac{3π}{4}$.
點評 本題主要考查了兩角和與差、同角三角函數的基本關系的應用.考查了考生對三角函數基本公式的靈活運用.
科目:高中數學 來源: 題型:選擇題
A. | x=-$\frac{π}{2}$ | B. | x=-$\frac{π}{4}$ | C. | x=π | D. | x=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{17}{2}$π | B. | 34π | C. | $\frac{17\sqrt{34}}{3}$π | D. | 17$\sqrt{34}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 只有一個小于1 | B. | 都小于1 | C. | 都大于1 | D. | 至少有一個小于1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,2) | B. | (-1,2) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com