分析 根據(jù)a3+a5=27,a2+a10=13列方程組求出{an}的通項公式,和前n項和公式,把Sn看做關于n得二次函數(shù),根據(jù)二次函數(shù)的性質得出答案.
解答 解:設等差數(shù)列{an}的公差為d,∵a3+a5=27,a2+a10=13,∴$\left\{\begin{array}{l}{2{a}_{1}+6d=27}\\{2{a}_{1}+10d=13}\end{array}\right.$,解得a1=24,d=-$\frac{7}{2}$,∴an=24-$\frac{7}{2}$(n-1)=$\frac{55}{2}-\frac{7n}{2}$.
∴Sn=2(a1+a2+a3+…+an-1+an)-a1-an=2×$\frac{{a}_{1}+{a}_{n}}{2}$×n-a1-an=(a1+an)(n-1)=$\frac{(103-7n)(n-1)}{2}$.
∴Sn為開口向下的二次函數(shù),對稱軸為n=$\frac{1}{2}(\frac{103}{7}+1)$=$\frac{55}{7}$=7$\frac{6}{7}$.
∵n∈N,∴當n=8時Sn取得最大值.
故答案為8.
點評 本題考查了等差數(shù)列的通項公式,求和公式,二次函數(shù)的性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $x=\frac{3π}{4}$ | B. | $x=\frac{7π}{6}$ | C. | $x=\frac{7π}{12}$ | D. | $x=\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com