14.如圖為一個(gè)幾何體的三視圖,正視圖和側(cè)視圖均為矩形,俯視圖中曲線部分為半圓,尺寸如圖,則該幾何體的體積為2+π.

分析 由三視圖可知:該幾何體由兩部分組成,前面是一個(gè)直三棱柱,后面是一個(gè)半圓柱.

解答 解:由三視圖可知:該幾何體由兩部分組成,前面是一個(gè)直三棱柱,后面是一個(gè)半圓柱.
∴該幾何體的體積V=$\frac{1}{2}×2×1×2$+$\frac{1}{2}π×{1}^{2}×2$=2+π.
故答案為:2+π.

點(diǎn)評 本題考查了直三棱柱及圓柱的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖四棱錐P-ABCD中,PA⊥面ABCD,底面ABCD是平行四邊形,∠ACB=90°,AB=$\sqrt{2}$,PA=BC=1,F(xiàn)是BC的中點(diǎn).
(1)求證:DA⊥平面PAC;
(2)在線段PD上找一點(diǎn)G,使CG∥面PAF,說明點(diǎn)G位置并求三棱錐A-CDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.奇函數(shù)f(x)的定義域?yàn)镽,若f(x+2)為偶函數(shù),且f(1)=-1,則f(7)+f(8)=( 。
A.-2B.-1C.0D.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在半徑為1的圓上隨機(jī)地取兩點(diǎn),連成一條線,則其長超過圓內(nèi)接等邊三角形的邊長的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線mx2-ny2=1(m>0,n>0)的離心率為2,則$\frac{m}{n}$的值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的圖象經(jīng)過點(diǎn)$({0,\frac{1}{2}})$,且相鄰兩條對稱軸的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是A,B,C的對邊,若$f({\frac{A}{2}})-cosA=\frac{1}{2}$,bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{{\sqrt{3}c-2b}}{{\sqrt{3}a}}=\frac{{sin(\frac{π}{2}-C)}}{cos(π-A)}$,則角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)i為虛數(shù)單位,則$\frac{7+i}{3+4i}$等于( 。
A.1-iB.1+iC.2+iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知離心率為e的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,直線l:y=ex+a與x、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),$\overline{AM}$=λ$\overline{AB}$,P是點(diǎn)F1關(guān)于直線l的對稱點(diǎn).
(I)當(dāng)λ∈[$\frac{1}{4}$,$\frac{3}{4}$]時(shí),求e的取值范圍;
(Ⅱ)若△PF1F2是等腰三角形,求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊答案