已知函數(shù)f(x)的定義域為R,對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,若f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)是R上的減函數(shù);
(3)求函數(shù)f(x)在區(qū)間[-2,4]上的值域.
考點:抽象函數(shù)及其應(yīng)用,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先利用特殊值法,求證f(0)=0,令y=-x即可求證;
(2)由(1)得f(x)為奇函數(shù),f(-x)=-f(x),利用定義法進行證明;
(3)由函數(shù)為減函數(shù),求出f(-2)和f(4)繼而求出函數(shù)的值域,
解答: 解:(1)證明:∵f(x)的定義域為R,令x=y=0,則f(0+0)=f(0)+f(0)=2f(0),
∴f(0)=0.
令y=-x,則f(x-x)=f(x)+f(-x),
即f(0)=f(x)+f(-x)=0.
∴f(-x)=-f(x),故f(x)為奇函數(shù).
(2)證明:任取x1,x2∈R,且x1<x2
則f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).
又∵x2-x1>0,∴f(x2-x1)<0,∴f(x2)-f(x1)<0,即f(x1)>f(x2).
故f(x)是R上的減函數(shù).
(3)∵f(-1)=2,∴f(-2)=f(-1)+f(-1)=4.
又f(x)為奇函數(shù),∴f(2)=-f(-2)=-4,
∴f(4)=f(2)+f(2)=-8.
由(2)知f(x)是R上的減函數(shù),
所以當x=-2時,f(x)取得最大值,最大值為f(-2)=4;
當x=4時,f(x)取得最小值,最小值為f(4)=-8.
所以函數(shù)f(x)在區(qū)間[-2,4]上的值域為[-8,4].
點評:本題主要考查了抽象函數(shù)及其應(yīng)用,以及利用函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,并根據(jù)函數(shù)的單調(diào)性解函數(shù)值不等式,體現(xiàn)了轉(zhuǎn)化的思想,在轉(zhuǎn)化過程中一定注意函數(shù)的定義域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過點A(-5,2),且直線l在x軸的截距等于在y軸上的截距的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解一大片經(jīng)濟林生長情況,隨機測量其中的60株樹木的底部周長(單位:Cm),將周長整理后畫出的頻率分布表和頻率分布直方圖如下:觀察圖形,回答下列問題:
組距頻數(shù)頻率
[39.5,49.5〕60.1
[49.5,59.5〕 0.15
[59.5,69.5〕9 
[69.5,79.5〕18 
[79.5,89.5〕 0.25
 
[89.5,99.5〕30.05
合計  
(1)補充上面的頻率分布表和頻率分布直方圖.
(2)79.5~89.5這一組的頻數(shù)、頻率分別是多少?
(3)估計這片經(jīng)濟林生長的合格率(60cm及以上為合格)
(4)根據(jù)頻率分布直方圖求這60株樹木的底部周長的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=
1
2
BC.
(Ⅰ)求證:AB1∥面A1C1C;
(Ⅱ)求二面角C-A1C1-B的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)a、b滿足:a2+b2=2
ab

(1)求
1
a
+
1
b
的最小值m;
(2)設(shè)函數(shù)f(x)=|x-t|+|x+
1
t
|(t≠0),對于(1)中求得的m,是否存在實數(shù)x,使得f(x)=
m
2
成立,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒子內(nèi)裝有4張卡片,上面分別寫著數(shù)字1,1,2,2,每張卡片被取到的概率相等.先從盒子中隨機任取1張卡片,記下它上面的數(shù)字x,然后放回盒子內(nèi)攪勻,再從盒子中隨機任取1張卡片,記下它上面的數(shù)字y.
(Ⅰ)求x+y=2的概率P;
(Ⅱ)設(shè)“函數(shù)f(t)=
3
5
t2-(x+y)t+
18
5
在區(qū)間(2,4)內(nèi)有且只有一個零點”為事件A,求A的概率P(A).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若a<1且不等式f(x)≥2x-3對一切實數(shù)x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)不等式|x-
1
4
|+|x-
3
4
|<1的解集為M.
(1)求集合M.
(2)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-x2+bx-3的圖象的對稱軸為x=2,則f(x)的值域為
 

查看答案和解析>>

同步練習冊答案