4.在某年級(jí)的聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸獎(jiǎng)的游戲,在一個(gè)口袋中裝有10個(gè)紅球和20個(gè)白球,這些球除顏色外完全相同,一次從中摸出5個(gè)球,至少3個(gè)紅球就中獎(jiǎng),則中獎(jiǎng)概率為0.19.

分析 求出一次從30個(gè)球中摸出5個(gè)球的不同方法是多少以及至少3個(gè)紅球方法是多少,計(jì)算對(duì)應(yīng)的概率即可.

解答 解:一次從30個(gè)球中摸出5個(gè)球,不同的方法是C305=142506種;
至少3個(gè)紅球,不同的方法是C103C202+C104C201+C105C200=27252種,
故從中摸出5個(gè)球,至少3個(gè)紅球就中獎(jiǎng),則中獎(jiǎng)概率為P=$\frac{27252}{142506}$≈0.19,
故答案為:0.19

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算問(wèn)題,也考查了組合數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如果橢圓$\frac{x^2}{81}+\frac{y^2}{25}=1$上一點(diǎn)M到此橢圓一個(gè)焦點(diǎn)F1的距離為10,N是MF1的中點(diǎn),O是坐標(biāo)原點(diǎn),則ON的長(zhǎng)為(  )
A.2B.4C.8D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.著名英國(guó)數(shù)學(xué)和物理學(xué)家Issac Newton(1643年-1727年)曾提出了物質(zhì)在常溫環(huán)境下溫度變化的冷卻模型.把物體放在冷空氣中冷卻,如果物體原來(lái)的溫度是θ1℃,空氣的溫度是θ0℃,tmin后物體溫度θ℃,可由公式θ=θ+(θ-θ)e-kt(e為自然對(duì)數(shù)的底數(shù))得到,這里k是一個(gè)隨著物體與空氣的接觸狀況而定的正的常數(shù).現(xiàn)將一個(gè)原來(lái)溫度為62℃的物體放在15℃的空氣中冷卻,1min以后物體的溫度是52℃.
(Ⅰ)求k的值(精確到0.01);
(Ⅱ)該物體從原來(lái)的62℃開始冷卻多少min后溫度是32℃?
(參考數(shù)據(jù):ln$\frac{37}{47}$≈-0.24,ln$\frac{27}{47}$≈-0.55,ln$\frac{17}{47}$≈-1.02)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)求函數(shù)y=x2-4x+5,x∈[0,5)的值域;
(2)已知函數(shù)f(x)=$\frac{x-1}{x+2}$,x∈[3,5]求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若關(guān)于x的方程3-x=a2有負(fù)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{|x|}{x+1}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)若方程f(x)-kx2=0有四個(gè)不等實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.將一個(gè)總體分為A,B,C三層,其個(gè)數(shù)之比為3:2:2,若用分層抽樣抽取容量為700的樣本,則應(yīng)該從C中抽取的個(gè)體數(shù)量為200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1的焦點(diǎn)在y軸上,則一定有( 。
A.m>n>0B.n>m>0C.0>m>nD.0>n>m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{6}$,則|$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案